
Tools for Understanding the Behavior of Telecommunication Systems

André Marburger
Aachen University of Technology

Department of Computer Science III
Ahornstraße 55, 52074 Aachen, Germany

marand@cs.rwth-aachen.de

Bernhard Westfechtel
Aachen University of Technology

Department of Computer Science III
Ahornstraße 55, 52074 Aachen, Germany

westfechtel@cs.rwth-aachen.de

Abstract

Many methods and tools for the reengineering of soft-
ware systems have been developed so far. However, the
domain-specific requirements of telecommunication sys-
tems have not been addressed sufficiently. These systems
are designed in a process- rather than in a data-centered
way. Furthermore, analyzing and visualizing dynamic be-
havior is a key to system understanding. In this paper, we
report on tools for the reengineering of telecommunication
systems which we have developed in close cooperation with
an industrial partner. These tools are based on a variety of
techniques for understanding behavior such as visualization
of link chains, recovery of state diagrams from the source
code, and visualization of traces by different kinds of dia-
grams. Tool support has been developed step by step in re-
sponse to the requirements and questions stated by telecom-
munication experts at Ericsson Eurolab Germany.

1. Introduction

Reengineering of large and complex software systems
has proved a difficult task. According to the “horseshoe
model of reengineering” [4, 10], reengineering is divided
into three phases. Reverse engineering is concerned with
step-wise abstraction from the source code and system com-
prehension. In the restructuring phase, changes are per-
formed on different levels of abstraction. Finally, forward
engineering introduces new parts of the system (from the
requirements down to the source code level).

For reengineering, many methods and tools have been
developed. To a large extent, however, previous work has
been data-centered since it focuses on structuring the data
maintained by an application. In particular, numerous ap-
proaches have addressed the migration of legacy business
applications — written, e.g., in COBOL — to an object-
based or object-oriented architecture [5, 15, 23]. This task
requires the grouping of data and functions into classes

with corresponding attributes and methods. Another stream
of research has dealt with programming languages such as
C++ and Java which already provide language support for
object-oriented programming [17].

Reengineering of process-centered applications has been
addressed less extensively so far [25]. For example, a
telecommunication system is composed of a set of dis-
tributed communicating processes which are instantiated
dynamically for handling calls requested by its users. Such
a system is designed in terms of services provided by en-
tities which communicate according to protocols. Under-
standing a telecommunication system requires the recovery
of this conceptual world from the actual source code and
other sources of information.

The E-CARES1 research cooperation between Ericsson
Eurolab Deutschland GmbH (EED) and Department of
Computer Science III, Aachen University of Technology,
has been established to develop methods, concepts, and
tools for the reengineering of complex legacy telecommu-
nication systems. E-CARES has been driven strongly by
the requirements of software engineers who are involved in
the design and implementation of GSM networks for mobile
communication. The subject of study is Ericsson’s Mobile-
service Switching Center (MSC) for GSM networks called
AXE10. The AXE10 software system comprises approx-
imately 10 million lines of code spread over about 1,000
executable units, and has an estimated lifetime of about 40
years. Thus, there is an urgend need for tool support to im-
prove program evolution and maintenance.

In E-CARES, a prototypical environment — called E-
CARES prototype [14] — is being developed which ad-
dresses the reengineering of telecommunication systems.
So far, tool support covers only reverse engineering, i.e.,
the first phase of reengineering. While structural analysis
is covered as well, we put strong emphasis on behavioral
analysis since the structure alone is not very expressive in
the case of a telecommunication system.

1Ericsson Communication ARchitecture for Embedded Systems [13]



BTS
Base Transceiver System

BSC
Base Station Controller

MSC
Mobile−services
Switching Center

(AXE10)

GMSC
(Gateway)

MS
Mobile Station

other networks

Figure 1. Simplified sketch of a GSM network

The rest of this paper is structured as follows: Section 2
motivates our research and explains its background. Sec-
tion 3 gives an overview of the E-CARES prototype. Sec-
tion 4 briefly describes structural analysis. Section 5, the
core part of this paper, presents a variety of techniques
which support the understanding of behavior. Section 6
introduces metrics — for both structure and behavior —
which further improve the understanding of telecommuni-
cation systems. Section 7 discusses related work, and Sec-
tion 8 concludes this paper.

2. Background

The mobile-service switching centers are the heart of a
GSM network (Figure 1). An MSC provides the services
a person can request by using a mobile phone, e.g., a sim-
ple phone call, a phone conference, or a data call, as well
as additional infrastructure like authentication. Each MSC
is supported by several Base Station Controllers (BSC),
each of which controls a set of Base Station Transceivers
(BTS). The interconnection of MSCs and the connection
to other networks (e.g., public switched telecommunica-
tion networks) is provided by gateway MSCs (GMSC). In
fact, the MSC is the most complex part of a GSM network.
An MSC consists of a mixture of hardware (e.g., switching
boards) and software units. In our research we focus on the
software part of this embedded system.

Figure 2 illustrates how a mobile originating call is han-
dled in the MSC. The figure displays logical rather than
physical components according to the GSM standard; dif-
ferent logical components may be mapped onto the same
physical component. The mobile originating MSC (MSC-
MO) for the A side (1) passes an initial address message
(IAM) to a GMSC which (2) sends a request for routing in-
formation to the home location register (HLR). The HLR
looks up the mobile terminating MSC (MSC-MTE) and (3)
sends a request for the roaming number. The MSC-MTE

Figure 2. Mobile originating call

Figure 3. System architecture

assigns a roaming number to be used for addressing during
the call and stores it in its visitor location register (VLR, not
shown). Then, it (4) passes the roaming number back to the
HLR which (5) sends the requested routing information to
the GMSC. After that, the GMSC (6) sends a call request to
the MSC-MTE. The MSC (7) returns an address complete
message (ACM) which (8) is forwarded to the MSC-MO.
Now, user data may be transferred between A and B.

Ericsson’s implementation of the MSC is called AXE10,
whose system architecture is shown in Figure 3. Each MSC
has a central processor which is connected to a set of re-
gional processors for controlling various hardware devices
by sensors and actors. The core of the processing is per-
formed on the central processor. The AXE10 software is
composed of blocks which constitute units of functional-
ity and communicate by exchanging signals (see below).
On each processor, a runtime system (called APZ) is in-
stalled which controls the execution of all blocks executing
on this processor. An event raised by some hardware device
is passed from the regional processor to the block handling
this event on the central processor. In response to the event,
an effect may be triggered on another hardware device.

The executable units of the AXE10 software system are
implemented in Ericsson’s in-house programming language
PLEX (Programming Language for EXchanges), which was
developed in about 1970 and has been extended since then.
PLEX is an asynchronous concurrent real-time language
designed for programming of telecommunication systems.



The programming language has a signaling paradigm as the
top execution level. That is, only events can trigger code ex-
ecution. Events are programmed as signals.

A PLEX program is composed of a set of blocks which
are compiled independently. Each block consists of a num-
ber of sectors for data declarations, program statements, etc.
(see Figure 8, which will be explained more thoroughly in
Section 5). Although PLEX does not support any further
structuring within these sectors, we have identified some ad-
ditional structuring through coding conventions in the pro-
gram sector. At the beginning of the program sector all
signal reception statements (signal entries) of a block are
coded. After these signal entry points, a number of labeled
statement sequences follows. The bottom part of the pro-
gram sector consists of subroutines.

The control flow inside a program sector is provided by
goto and call statements. The goto statement is used
to jump to a label of a labeled statement sequence. Sub-
routines are accessed by means of call statements. Both
goto and call statements are parameter-less. That is,
they affect only the control flow, but not the data flow.

Inter-block communication and data transport is pro-
vided by different kinds of signals. As every block has data
encapsulation, signals are able to carry data. Therefore, sig-
nals may affect both the control flow and the data flow.

At runtime, every block can create several instances
(processes). This again is not a feature of the PLEX pro-
gramming language but achieved by means of implemen-
tation tricks and coding conventions. Therefore, these in-
stances are managed by the block and not by the runtime
environment.

3. E-CARES prototype

In the E-CARES project, we design and implement tools
for reengineering of telecommunication systems and apply
them to the AXE10 system developed at Ericsson. The ba-
sic architecture of the E-CARES prototype is outlined in
Figure 4. The solid parts indicate the current state of real-
ization, the dashed parts refer to further extensions.

Below, it is crucial to distinguish between the following
kinds of analysis: Structural analysis refers to the static sys-
tem structure, while behavioral analysis is concerned with
its dynamic behavior. Thus, the attributes “structural” and
“behavioral” denote the outputs of analysis. In contrast,
static analysis denotes any analysis which can be performed
on the source code, while dynamic analysis requires infor-
mation from program execution. Thus, “static” and “dy-
namic” refer to the inputs of analysis. In particular, behav-
ior can be analyzed both statically and dynamically.

We obtained three sources of information for the static
analysis of the structure of a PLEX system. The first one
is the source code of the system. It is considered to be the

Figure 4. Prototype architecture

core information as well as the most reliable one. Through
code analysis (parsing) a number of structure documents is
generated from the source code, one for each block. These
structure documents form a kind of textual graph descrip-
tion. The second and the third source of information are
miscellaneous documents (e.g., product hierarchy descrip-
tion) and the system documentation. As far as the infor-
mation from these sources is computer processable, we use
parsers and scripts to extract additional information, which
is stored in structure documents, as well.

The static analysis tool processes the graph descriptions
for individual blocks and creates corresponding subgraphs
of the structure graph representing the overall application.
The subgraphs are connected by performing global analy-
ses in order to bind signal send statements to signal entry
points. Moreover, the subgraphs for each block are reduced
by performing simplifying graph transformations [13]. The
static analysis tool also creates views of the system at dif-
ferent levels of abstraction. In addition to structure, static
analysis is concerned with behavior (e.g., extraction of state
machines or of potential link chains from the source code).

There are two possibilities to obtain dynamic informa-
tion: using an emulator or querying a running AXE10. In
both cases, the result is a list of events plus additional infor-
mation in a temporal order. Such a list constitutes a trace
which is fed into the dynamic analysis tool. Interleaved with
trace simulation, dynamic analysis creates a graph of in-
terconnected block instances that is connected to the static
structure graph. This helps telecommunication experts to
identify components of a system that take part in a certain
traffic case. At the user interface, traces are visualized by
collaboration and sequence diagrams.

Both the static and the dynamic analysis tool calculate
metrics which were designed to improve the understanding
of both structure and behavior. These metrics are visualized
e.g. in the underlying structure graph (see Section 6).

The dashed parts of Figure 4 represent planned exten-
sions of the current prototype. The re-design tool will be



used to map structure graph elements to elements of a mod-
eling language (e.g., ROOM [20] or SDL [8]). This will
result in an architecture graph that can be used to perform
architectural changes to the AXE10 system. The code gen-
erator will generate PLEX code according to changes in the
structure graph and/or the architecture graph. The wrapper
generator will enable reuse of existing parts of the AXE10
system written in PLEX in a future switching system that is
written in a different programming language, e.g., C++.

To reduce the effort of implementing the E-CARES pro-
totype, we make extensive use of generators and reusable
frameworks [14]. Scanners and parsers are generated with
the help of JLex and jay, respectively. Graph algorithms are
written in PROGRES [19], a specification language based
on programmed graph transformations. From the specifi-
cation, code is generated which constitutes the application
logic of the E-CARES prototype. The user interface is im-
plemented with the help of UPGRADE [1], a framework for
building interactive tools for visual languages.

4. Structural analysis

The static structure of a PLEX program is represented
internally by a structure graph, a small (and simplified) ex-
ample of which is shown in Figure 52. In the example,
there is a subsystem which contains two blocks A and B.
The subgraphs for these blocks are created by the PLEX
parser. The subgraph for a block — the block structure
graph — contains nodes for signal entry points, labels, (con-
tiguous) statement sequences, subroutines, exit statements,
etc. Thus, the block structure graph shows which signals
may be processed by the block, which statement sequences
are executed to process these signals, which subroutines are
used for processing, etc. In addition, the block structure
graph initially contains nodes representing outgoing sig-
nals. Subsequently, a global analysis is carried out to bind
outgoing signals to receiving blocks based on name identity.
In our example, a signal H is sent in the statement sequence
X of block A. This signal is bound to the entry point of block
B. From the signal edges between statement sequences and
signal entry points, more coarse-grained communication
edges may be derived (between blocks and eventually be-
tween subsystems).

Externally (at the user interface), the structure graph is
represented by multiple views [13]. The product hierarchy
is displayed in a tree view. Furthermore, there is a variety of
graphical views which display the structure graph at differ-
ent levels of abstraction (internals of a block, block commu-
nication within a subsystem, communication between sub-
systems). For example, Figure 13 shows block communica-
tions within a subsystem of AXE10 (see Section 6 for fur-

2For the time being, please ignore all graph elements for link chains
(lc), which will be explained in Section 5.

Figure 5. Cut-out of a structure graph

ther explanations). The user may select among a set of dif-
ferent, customizable layout algorithms to arrange graphical
representations in a meaningful way. He may also collapse
and expand sets of nodes to adjust the level of detail. Graph
elements representing code fragments are connected to the
respective source code regions, which may be displayed on
demand in text views.

5. Behavioral analysis

5.1. Motivation

As stated in Section 1, we found that the static system
structure is not very expressive in the case of telecommuni-
cation systems. These highly dynamic, flexible, and reac-
tive systems handle thousands of different calls at the same
time. The numerous services provided by a telecommunica-
tion system are realized by re-combining and re-connecting
sets of small (stand alone) processes, block instances in our
case, at runtime. Each of these block instances realizes a
certain kind of (internal) mini-service. Some of the blocks
can even create instances for different mini-services depen-
dent on the role they have to play in a certain scenario.

Therefore, structural analysis as described in Section 4
is not sufficient to understand telecommunication systems.
For example, the structure graph does not contain any infor-
mation on how many instances of a single block are used to
set up a simple phone call. In Figure 6, a so-called link chain
for the GSM-layer 3 part of a simple mobile originating call
is sketched. Link chains describe how block instances are
combined at runtime to realize a certain service. Each node
represents a block instance. An edge between two nodes in-
dicates signal interchange between these blocks. Each link
chain consists of a main part (directed edges) and side-links
for supplementary services (authentication, charging, etc.).
The directed edges between elements of the main link chain
indicate its establishment from left to right; communication
is bidirectional in all cases. In correspondence to Figure



MSC−MO GMSC MSC−MTE

TPHOCCA TCA TPHI RIG RRG TPHO TPHI TCB CCB

MHCC

CDCCCDCC

MHCC

CPPH CPPH

TPHO TPHITPHITPHITPHI

DAPCDCC

Call Control A−Subscriber
Traffic Coordinator A−Subscriber
Message Handler Call Control
Cross Phase Protocol Handler
Call Data and Charging Control
Transport Protocol Handler Incoming

TCA
MHCC
CPPH
CDCC
TPHI

CCA TPHO
RIG
RRG
CCB
TCB
DAP

Transport Protocol Handler Outgoing
Routing Interrogation Gateway
Roaming Routing Gateway
Call Control B−Subscriber
Traffic Coordinator B−Subscriber
Database Access Part

Figure 6. Simplified link chain for mobile orig-
inating call at GSM-layer 3

2, the link chain in Figure 6 is divided into the three parts
MSC-MO, GMSC, and MSC-MTE.

This simple example shows that there are, e.g., three in-
stances of the charging access (CDCC), two message han-
dler instances (MHCC), and two instances of the CPPH pro-
tocol handler block needed to setup a mobile originating
call. This kind of behavioral information is very important
to telecommunication engineers. Sections 5.2 and 5.4 de-
scribe how information on link chains can be derived via
static and dynamic analysis, respectively.

Furthermore, each block in Figure 6 implements at least
one state machine. State machines are a common modeling
means in the design of telecommunication systems. There-
fore, telecommunication experts are interested in having a
good knowledge about the state machines implemented in
a block and their operation at runtime. Extraction of state
machines from source code is discussed in Section 5.3.

5.2. Static link chain analysis

In case of the AXE10, link chains can be obtained from
static analysis by making use of an error recovery mecha-
nism implemented in the system. The mechanism allows to
kill processes specific to an erroneous link chain if normal
error recovery fails. Each block instance that is the initiator
of a new link chain first notifies the Link Chain Manager
(LCM) of the APZ via an lc start message (Figure 7). The
LCM creates a new Link Chain Identifier (LID), stores it in
the Link Chain Register, and returns it to the initiating block
instance. Now the LID will be implicitly attached to every
signal the initiating block instance sends to any other block
instance. If another block instance is requested, it notifies
its participation in a link chain by sending an lc part mes-
sage to the LCM which in turn will respond by sending an
acknowledgment containing the currently valid LID from
the Link Chain Register. The LID will now be implicitly
attached to the second block’s signals as well etc.

The lc * messages to the platform system are represented
by corresponding PLEX statements in the source code.

Figure 7. Link chain handling

Thus, these statements are detected and inserted into the
structure graph during structural analysis (see Figure 5).
The static link chain analysis searches for the occurrence
of an lc start statement in a given block’s structure graph
and marks the surrounding statement sequence. All sig-
nals sent after the link chain initiation notification by this
statement sequence do transmit an LID3. Thus, these sig-
nals are traversed to the receiving blocks. Next, the block
structure graph of each receiving block is traversed starting
from a signal entry point which one of the signal edges is
connected to. If an lc part statement is reachable from this
signal entry, an lc next block edge is inserted into the struc-
ture graph between sending and receiving block.

In Figure 5, block A contains an lc start statement in
statement sequence X. Furthermore, signal H triggers the
execution of statement sequence Y in block B which con-
tains an lc part statement. As a result, a new edge of type
lc next block is inserted into the structure graph to indicate
that A and B can take part in the same link chain.

After having performed static link chain analysis on the
structure graph, it is possible to visualize which blocks po-
tentially take part in the same link chain and which block
triggers the participation of which other blocks. Indeed,
if the static link chain analysis is performed for the whole
structure graph, the result is the union of all link chains that
can occur at runtime. Nevertheless, this information is very
useful as most link chains appear to be constructed from
smaller, invariant link chains. Additionally, the scope of a
static link chain analysis can be limited by selecting a start-
ing block. In this case, only blocks are considered that are
reachable from the starting block via a path of signals. Here,
link chain analysis also accepts lc part statements as initia-
tors of a ‘new’ link chain because an intermediate block of
a real link chain might have been selected as starting point.
Furthermore, certain classes of telecommunication services

3To be precise, the lc start statement must not be part of a conditional
statement to make sure that subsequently sent signals do transmit an LID.
Otherwise, only signals in the same conditional context do so.



(e.g., voice calls) always have a kind of basic common link
chain. Smaller chains representing different supplementary
services are just linked in on demand. In combination with
system traces (see Section 5.5), it is possible to identify the
basic common link chains.

5.3. State machine extraction

The information extracted from the source code and
other sources of information, its representation, and its vi-
sualization have to meet the demands of both the reengineer
and the system experts involved. In particular, telecom-
munication systems are often planned and modeled using
state machines. That is, system experts think in terms of
state machines and protocols. Thus, the design process is
process- and behavior-centered rather than data-centered,
and blocks are just implementations of one or more state
machines. Though PLEX does not provide any language
elements for state machine implementation, the knowledge
of some (informal) design rules at Ericsson and additional
manual analysis of a couple of PLEX blocks allowed to de-
velop an algorithm to detect state machines in and extract
them from a block’s source code or structure graph, respec-
tively.

The example code in Figure 8 represents the main pat-
terns used to implement state machines in PLEX. Every
block contains declarations of a stored (DS flag) data record
(BlockTRecord), a file to store several of these records, and
a pointer (BlockTPointer) to the record currently used in ex-
ecution. Each of these records represents a block instance.
A block implements a state machine if its stored record con-
tains a symbol variable of a string-valued enumeration type
whose name contains the substring STATE. Additionally, the
set of possible values of this state variable must enclose the
values IDLE and SEIZED. Furthermore, each signal entry
(ENTER � signal name � ) is immediately followed by a case
statement whose condition queries the current value of the
state variable. Each branch of this case statement triggers
different executions in the block (instance). Accordingly,
a state change is represented by an assignment to the state
variable. A design rule determines that a block must change
its state at most once per execution cycle. No state change
corresponds to a feedback loop in the underlying state ma-
chine. Furthermore, after a state change and a possibly sub-
sequent signal sending statement, a block has to terminate
immediately by means of an EXIT statement.

Hence, using this information we can conclude from
the example in Figure 8 that block T owns a state variable
named STATE. This state variable can have – among others
– the values IDLE, SEIZED, SETUP, and DISC. When re-
ceiving (consuming) SignalA in states IDLE or SEIZED, the
block will change to state SETUP and send SignalB. This re-
sults in the lower three states and two transitions on the right

...
! Declare Sector !
DECLARE
...
RECORD BlockTRecord;

...
SYMBOL VARIABLE STATE = (IDLE, SEIZED, SETUP, DISC, ...) DS;
...

END RECORD;
POINTER BlockTPointer(BlockTRecord);
...

END DECLARE;

! Program Sector !
PROGRAM;

! Begin Interface !
ENTER SignalA WITH SignalDataA;

CASE BlockTPointer:STATE IS
WHEN IDLE, SEIZED DO

GOTO SequenceY;
OTHERWISE DO

GOTO UnexpectedState;
ESAC;

ENTER SignalC WITH SignalDataC;
CASE BlockTPointer:STATE IS

WHEN DISC DO
GOTO SequenceZ;

OTHERWISE DO
GOTO UnexpectedState;

ESAC;
...
! End Interface !

SequenceY)
...
BlockTPointer:STATE = SETUP;
SEND SignalB WITH SomeData;
EXIT;

SequenceZ)
...
BlockTPointer:STATE = IDLE;
SEND SignalD WITH AgainSomeData;
EXIT;

...
END PROGRAM;
...

Figure 8. Example code with relevant state-
ments for state machine extraction

side of Figure 9. That is, a cut-out of the block’s state ma-
chine has been extracted. The rest of the state machine can
be extracted stepwise by analyzing the source code for each
signal entry as originator again and again. But compared
to a graph-based algorithm this procedure is inefficient for
large systems like the AXE10.

The graph-based state machine extraction algorithm tra-
verses a block’s structure graph trying to find a path from
a signal entry to a statement sequence that contains an as-
signment to the state variable. In each run, the starting
states from the conditional clauses of the case statement and
the name of the incoming signal are stored. If a state as-
signment is found, a state transition from the starting state
to the new state is inserted into the block’s state diagram.
The state transition is annotated with the incoming and the
outgoing signal. Additional information that is necessary



Figure 9. State machine extraction on struc-
ture graph

for the state machine extraction and that is not represented
by elements of the structure graph (e.g., conditional state-
ments) is stored in attributes of nodes and edges. Therefore,
all information that is needed for the extraction is obtained
in a single run of the PLEX parser.

In the sample graph of Figure 9 corresponding to the
source code in Figure 8, the transition from DISC to IDLE
can be obtained by starting with signal entry C. The condi-
tions for the branches of the subsequent case statement are
stored in the corresponding GOTO edges. On state DISC,
the execution of block T is continued at statement sequence
Z which modifies the state variable STATE, sends signal Sig-
nalD, and terminates its execution.

The result of the state machine extraction is a state ma-
chine of a block that might be too large. That is, it may
contain too many transitions. A reason for this anomaly is
given by nested if-clauses that query the current value of
different variables. At runtime only a small amount of all
possible pairs of values of these variables might be valid.
That is, only a subset of all possible execution paths through
this part of the source code might be possible in reality. The
identification of those state transitions that are valid is pos-
sible in combination with trace information (see Section 6).

Another problem arises from the fact that blocks can
have several state machines inside – one for every mini-
service they implement. The algorithm is designed to ex-
tract all state machines in parallel in a single pass.

5.4. Tracing

As stated in Section 3, there are two possibilities to ob-
tain dynamic information: using an emulator or querying a
running AXE10. In the latter case, the complexity of the
information traced has to be reduced to avoid that the sys-
tem gets into timing problems and becomes instable. Be-
sides error handling, tracing jobs have the highest priority

Figure 10. Obtaining dynamic information

in a running AXE10. Therefore, intense tracing can cause
abnormal behavior, e.g., through an increased number of
missed time constraints and the resulting system recovery
actions. Furthermore, tracing an AXE10 that is in normal
operation – handling thousands of calls at the same time –
results in trace files containing information on all of these
calls. This huge amount of information makes it difficult to
focus on a special call scenario, which is one of the goals of
tracing. If real-time issues are not regarded, there is no need
to query a running switching system. Consequently, we de-
cided to use the AXE10 emulator. However, the procedure
described below and the dynamic analysis tool are the same
for both sources of dynamic information.

First, the tracing facility of the emulator is configured.
The configuration determines which information (e.g., sig-
nal interchange, data access) is to be captured in a trace
file and which parts of the system should be observed (e.g.,
several blocks in a certain subsystem). Currently, we are in-
terested in the following information: signals, sending and
receiving block (instance) of a signal, data transferred with
a signal, signal priority, and assignments to certain (state)
variables. After the configuration has finished, the running
emulator starts to capture all actions whose tracing has been
switched on (Figure 10). Now the testing equipment can be
used to set up a call scenario of interest, e.g., a mobile orig-
inating call, and trigger the execution of telecommunication
services implemented in the AXE10.

The dynamic analysis tool and the associated trace file
parser read a selected trace file stepwise – action by action –
on demand. Every action is analyzed to identify the partici-
pating entities (block instances, signals, etc.) of the instance
graph. The instance graph is then modified accordingly –
new elements are inserted and existing ones are updated.
Some modifications are also propagated into the static struc-
ture graph. For example, every block instance is connected



Figure 11. Example of a collaboration diagram

to its corresponding block in the structure graph and the ac-
tivation of a block instance results in the activation of the
corresponding block.

During their daily work, telecommunication experts
need different views on the traffic cases they analyze.
Sometimes they just need a complete overview, sometimes
they focus on the inter-work of two block instances, and
sometimes the development of a call over time is their main
interest. Therefore, dynamic analysis provides three dif-
ferent working modes: In step mode, the dynamic analysis
process is interactive. That is, the reengineer triggers the
analysis of each action in the selected trace file manually.
In run mode, the analysis tool processes the whole trace in
one run. This mode has been implemented to create com-
plete diagrams for re-documentation purposes. In anima-
tion mode, the actions in a trace file are processed succes-
sively in adjustable time intervals. The animation mode is
used to produce a slow motion replay of the actions that
took place in the systems software with respect to a certain
call scenario. For convenience, it is possible to switch be-
tween the three working modes at any time.

All changes to the instance graph are directly visualized
in the dynamic analysis tool. Here, a reengineer is able to
refine and adjust the amount of information displayed by
means of a complex graph filter interactively. Furthermore,
he can choose between two kinds of diagrams that are com-
monly used in the telecommunications domain: collabora-
tion diagrams and sequence diagrams similar to those pro-
vided in the UML [2]. Collaboration diagrams can be used
in all three working modes of the analysis tool whereas se-
quence diagrams are mainly used for re-documentation pur-
poses. For example, the collaboration diagram in Figure 11
and the sequence diagram in Figure 12 show the same trace
at the same stage. The different grey scales of the block
instances in Figure 11 illustrate that the block instances be-
long to different subsystems.

The dynamic analysis tool has proved its value for sys-
tem analysis and system understanding in several tests and
discussions with the expert group from Ericsson supporting

Figure 12. Example of a sequence diagram

our research. However, in complex traces, huge amounts
of information are obtained from the emulator. As a result,
numerous elements are inserted into the instance graph that
have to be visualized to the user at once. In step mode and
even worse in animation mode, the user often gets confused
by the quantity of information after some time and might
even lose his track. There are two complementing possi-
bilities to support the user in understanding complex call
scenarios: limiting the observation scope of a trace and ex-
tending the visualization with aging.

The limitation of the observation scope is necessary any-
how to suppress noise in traces that results from periodic
jobs like access statistics in order to focus on special as-
pects. Limitation means that observation is only activated
for selected blocks, signals, and variables of a traced system
in the emulator configuration. All other blocks etc. are ig-
nored; e.g., tracing could be limited to a certain subsystem.
But the block instances that take part in a certain call sce-
nario are always spread over various parts of the AXE10.
Hence, there are e.g. signals coming from the ignored parts
to observed blocks and vice versa. This leads to missing
links (signals) in the control flow of a trace, in the instance
graph, and in the diagrams produced by the dynamic analy-
sis tool. Therefore, a heuristic has been implemented in the
dynamic analysis tool that inserts synthetic signals during
trace analysis to keep traces connected. For example, the
heuristic marks signals sent to unobserved block instances
(out signal action), tracks the following signal actions for
a corresponding in signal action, and inserts an appropriate
synthetic incoming signal if it is missing4. For this purpose,
the dump of the emulator configuration that corresponds to
the current trace file is used to extract information on ob-
served entities. This is necessary to keep the diagrams cor-
rect. Similarly, if another block is activated out of turn after
a signal has been sent to the ignored part of a system, there

4For each signal a pair of signal actions must be captured for a trace
file to be correct – an outgoing signal action at the sending block instance
and an incoming signal action at the receiving block instance. But, signal
actions are only captured for observed blocks.



must have been communication in the ignored part which
has not been captured. This circumstance can also be rep-
resented by an appropriate synthetic signal during dynamic
analysis that summarizes this unknown communication.

In addition, the user is supported during trace analysis
through the aging of the representation elements in the vi-
sualization of the instance graph. Consider a collaboration
diagram view, which represents the current state of a call’s
link chain. Some elements in this diagram remain inactive
while others participate continuously in the current part of
the trace. But this difference in the amount of participa-
tion is not noticed easily in complex traces. Therefore, all
elements in the collaboration diagram which have not par-
ticipated recently in a current trace are faded out continu-
ously. If an element participates again, it is re-displayed
immediately. This procedure guarantees that the visualiza-
tion focuses on elements that determine the current behav-
ior. Keeping in mind that a call link chain develops over
time and that it creates temporary side links that are never
released explicitly for efficiency reasons, visualization ag-
ing is a good means to analyze the evolution of a call over
time.

5.5. Combining analyses

So far, the direct analysis of a system’s runtime behav-
ior has been addressed. But there are additional applica-
tions for a combination of analyses. In Section 5.2 we have
mentioned that link chains for a certain class of calls (e.g.,
voice calls) have a common basic link chain that is extended
by side links representing different supplementary services
(e.g., charging). Traces can be used to identify basic link
chains and supplementary side links. The procedure is sim-
ilar to feature analysis as described in [7].

Always, several traces of the system are needed. To iden-
tify the basic link chain of a class of calls, a number of traces
of different voice calls is needed. All these traces are now
processed by the dynamic analysis tool to produce corre-
sponding instance graphs. Next, the logical and operation
over all instance graphs is used to create an instance graph
that represents the intersection of all instance graphs that
result from trace analysis. This intersection graph corre-
sponds to the common basic link chain of all these traces.

To find out whether a side link inherently belongs to a
given type of call (e.g., a mobile originating call), additional
traces are needed that belong to other types of calls. Now,
all elements that are part of the other calls can be subtracted
from the instance graph of the first trace which results in a
set of elements that inherently belong to this kind of call.

The state machines statically extracted from source code
can be reused in the dynamic analysis of a systems runtime
behavior. Remember that state changes were captured in
trace files as well. In combination with a trace it is possible

Figure 13. Static communication weights

Figure 14. Dynamic communication weights

to animate the state machines of a marked set of blocks and
visualize them to the telecommunication expert.

6. Metrics

As presented so far, the E-CARES prototype provides
qualitative information on the structure and behavior of a
telecommunication system. In addition, telecommunication
experts are interested in quantitative information. The met-
rics introduced in this section further improve the under-
standing of a telecommunication system. Usually, metrics
are used for assessment (e.g., of the complexity of a sys-
tem), but so far we have not used them for this purpose.

Metrics are used to assign weights to graph elements.
These weights are defined with the help of both static and
dynamic information. They are attached to both structural



and behavioral graphs. At the user interface, weights are vi-
sualized with the help of different representation attributes,
e.g., colors, size of boxes, or thickness of edges.

As an example, Figure 13 shows a view on the structure
graph which displays communications at the block level.
Static weights are assigned to communication edges based
on the number of types of signals sent from the source to
the destination. Colors and thickness of edges are used to
represent communication weights. The thick lines at the
center of the diagram indicate where the main traffic oc-
curs. Telecommunication experts at Ericsson considered
this information useful to distinguish “communication high-
ways” from “secondary roads”. Similarly, weights may be
attached to blocks based on the code size so that is easier
to understand where the main functionality is implemented
(not shown in the figure).

Static weights provide general information on potential
executions. However, the telecommunication expert may
be interested more specifically in what happens in a spe-
cific trace (or a set of traces). To this end, we offer dy-
namic weights. For example, each communication edge is
weighted by the number of signals sent along this edge in
a specific trace. Again, we may display these weights in
the structure graph. By comparing Figure 14 to Figure 13,
the user may recognize the specific behavior in a certain
trace. It is also possible to hide all elements which do not
participate at all in the trace under study. In this way, the
user may compare expected and actual behavior. Alterna-
tively, weights may be displayed in a collaboration diagram,
which provides a more detailed view on the execution since
it shows individual block instances.

As a final example, let us briefly discuss the assignment
of weights to elements of state machines. In Subsection 5.3,
we mentioned that static analysis may produce a state dia-
gram which is too large. To detect potentially dead ele-
ments, state transitions are weighted according to the num-
ber of occurrences in some trace (or in a set of traces). State
transitions with weight 0 may be obsolete.

7. Related work

The E-CARES prototype is a reengineering environ-
ment designed for telecommunication systems. In partic-
ular, it is based on domain-specific architectural concepts.
A telecommunication system is modeled as a set of active
components which communicate by sending and receiving
signals. Thus, modeling is process-centered. Since the
static system structure is not very expressive, analysis of
behavior plays a crucial role in E-CARES.

In contrast, many other reengineering tools such as e.g.
Rigi [16] or KOGGE [6] primarily focus on the static sys-
tem structure. Moreover, they are typically data-centered;
consider e.g. tools for the reengineering of COBOL pro-

grams as described in [5, 15, 23]. Here, recovery of units of
data abstraction and migration to an object-oriented soft-
ware architecture play a crucial role [3]. More recently,
reengineering has also been studied for object-oriented pro-
gramming languages such as C++ and Java. E.g., TogetherJ
or Fujaba [17] generate class diagrams from source code.

Reengineering of telecommunication systems follows
different goals. Telecommunication systems are designed
in terms of layers, planes, services, protocols, etc. Behav-
ior is described with the help of state machines, message
sequence charts, link chains, etc. Thus, reengineering tools
are required to provide views on the system which closely
correspond to system descriptions given in standards, e.g.,
GSM. Telecommunication experts require views on the sys-
tem which match their conceptual abstractions.

In this paper, we focus on tools and techniques for be-
havioral analysis offered by the E-CARES prototype. Be-
low, we compare these to other approaches.

In the literature, a lot of work is described on the extrac-
tion of dynamic information from object-oriented systems.
The motivation for the need of dynamic information is quite
similar to ours: In object-oriented systems the runtime be-
havior of a system is neither predictable nor understandable
by just performing different kinds of static analysis on the
system’s source code. Source code analysis does not pro-
vide enough information to understand a software system
completely because there are components and relations that
only exist during its runtime.

There are different methods described how to extract or
gather dynamic information. In the majority of these meth-
ods, the code of the target system is instrumented so that a
trace is produced of the components executed in each test
case. The level of instrumentation ranges from very low
level instrumentation where the components of a trace are
branches in the target system control flow [25] to the in-
strumentation of class or method entry and exit points [22]
or inter-process messages [12, 24], respectively. Low level
instrumentation of a production system brings with it a sig-
nificant performance penalty since trace information is gen-
erated each time the system passes through an conditional
statement like if, switch, or any other decision points. In
general, for a large real-time system like the AXE10 switch-
ing system low level instrumentation would be too difficult.
In particular, if we ran a low level instrumented system, we
would experience severe timing problems within the sys-
tem. This would result in unusable traces.

Another approach that can be found nowadays is the uti-
lization of debugger and profiler logs to gather dynamic in-
formation [7, 9, 21]. In the end, debugger and profiler just
provide a more convenient, more efficient but also more in-
direct way of instrumenting source code or byte code, re-
spectively. Considering real-time systems, if too much in-
formation is queried this could result in unusable traces as



well. Fortunately, we can use an emulator to execute the
AXE10 source code as is – no instrumentation is necessary.
The output of tracing information is a configurable built in
functionality of this emulator. Additionally, the virtual time
mode of the emulator guarantees that complex test cases are
possible without running into timing problems.

There are different proposals for the representation of
dynamic information to a reengineer. In most cases, either
collaboration diagrams or different variations of sequence
diagrams are used [21]. Others [9, 18] use different kinds
of non-standard graph representations. In rare cases, there
are even more elaborate representations like the piano-roll
representation in [12]. We have chosen to implement both
a collaboration diagram view and a sequence diagram view
because these kind of representations are very common to
telecommunication engineers. Furthermore, we have im-
plemented different inspection modes for traces (manual
step-by-step inspection, slow-motion replay with aging, and
batch processing for re-documentation purposes). This pro-
vides a reengineer with maximum flexibility in the process-
ing and utilization of dynamic information.

When comparing the E-CARES approach of dynamic
information retrieval to other approaches, we found that
the majority of approaches collect this information from
a running system. There are only a few approaches [11]
that derive behavioral information via static analysis. In
E-CARES both static and dynamic analysis are utilized to
retrieve information on a systems’ behavior. Furthermore,
information retrieved from static and dynamic analysis can
be combined to overcome each others’ deficits: E.g., for
state machine extraction, code coverage is guaranteed via
static analysis while the precise dynamic information can
be used to search for potentially invalid transitions. That is,
information can be exchanged between static and dynamic
views.

In the literature, the post-processing of dynamic infor-
mation ranges from slicing of program structures, feature
location in code [7], and state machine extraction [22] to
re-documentation of the current implementation. The E-
CARES prototype currently comprises state machine ex-
traction and re-documentation; the implementation of pro-
gram slicing (which is related to architecture extraction in
our case) and feature location is still under construction.

8. Conclusion

We have presented tools for understanding the behavior
of telecommunication systems. These tools were developed
in close cooperation with telecommunication experts from
Ericsson. We followed an evolutionary approach to tool de-
velopment, i.e., functionality was added incrementally in
response to the requirements stated by the telecommunica-
tion experts. In this way, we took a step towards an envi-

ronment which is based on domain-specific concepts.
So far, approximately 500,000 lines of PLEX code plus

several ten thousands of lines of additional documents have
been processed, analyzed, visualized, and inspected on dif-
ferent levels of abstraction. Understandably, the exact and
detailed results are confidential and cannot be discussed
here. According to the telecommunication experts, the E-
CARES prototype allows to visualize the AXE10 software
systems in terms of their daily use, e.g., block dependen-
cies, state diagrams, link chains, and sequence diagrams.
For that, no tools have been available so far. In particular,
the dynamic analysis tool has proved its value for system
analysis and system understanding. Therefore, we are con-
vinced that analyzing and visualizing the dynamic behavior
of telecommunication systems is key to system understand-
ing. Furthermore, we believe that only the combination of
static and dynamic as well as structural and behavioral anal-
ysis – integrated in an interactive reengineering framework
– allows to obtain best possible results.

The current E-CARES prototype is domain dependent to
a certain extent. In particular, the structure graph is tightly
bound to the PLEX programming language, i.e., nodes of
the structure graph correspond to PLEX constructs such as
blocks, signal declarations, signal send statements, etc. At
Ericsson, other programming languages, e.g., C and C++,
are used, as well. To support multi-language systems, we
have started to divide the structure graph into programming
language dependent and language independent aspects. The
final goal is a flexible and extensible reengineering system
that consists of a core system which is extended with spe-
cific functionality in form of plug-in modules. For this pur-
pose, we are currently defining general interfaces between
the different parts of the system, e.g., between parsers and
static analysis tool, etc. The visualization of extracted in-
formation in form of different views, e.g., structural views,
sequence diagrams, collaboration diagrams, and state ma-
chines, are independent of the current subject of study. Even
the underlying analyses can be readily applied to other real-
time systems, provided that the needed information is avail-
able and storable in terms of our structure graph.

Additionally, we need a neutral representation at the ar-
chitecture level. Therefore, we are currently extending the
E-CARES prototype such that it builds a ROOM model
from analyzed programs. Others, like SDL or the compo-
nent model of UML 2.0 will be explored in the future.

Finally, we will extend the E-CARES prototype to cover
re-design. That is, we intend to support the restructuring
and extension of existing systems in addition to reverse en-
gineering, which has been our focus so far.

Acknowledgments The E-CARES project is funded by
Ericsson Eurolab Deutschland GmbH (EED); support is
gratefully acknowledged. We would like to thank the fol-



lowing members of EED for their constant active support,
critical feedback, and patience: Martin Blumbach, Jörg
Bruss, Axel Jeske, Per Ljungberg, Ari Peltonen, Andreas
Thülig, Dietmar Wenninger, and Andreas Witzel.

References

[1] B. Böhlen, D. Jäger, A. Schleicher, and B. Westfechtel. UP-
GRADE: Building interactive tools for visual languages.
In Proceedings of the 6th World Multiconference on Sys-
temics, Cybernetics, and Informatics (SCI 2002), volume
I (Information Systems Development I), pages 17–22, Or-
lando, Florida, July 2002.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison Wesley: Reading,
MA, 1999.

[3] G. Canfora, A. Cimitile, A. De Lucia, and G. Di Lucca.
Decomposing legacy systems into objects: An eclectic ap-
proach. Information and Software Technology, 43(6):401–
412, 2001.

[4] E. J. Chikofsky and J. H. Cross II. Reverse engineering and
design recovery: A taxonomy. IEEE Software, 7(1):13–17,
1990.

[5] K. Cremer, A. Marburger, and B. Westfechtel. Graph-based
tools for re-engineering. Journal of Software Maintenance
and Evolution: Research and Practice, 14(4):257–292, Aug.
2002.

[6] J. Ebert, R. Süttenbach, and I. Uhe. Meta-CASE in prac-
tice: A case for KOGGE. In Proceedings 9th International
Conference on Advanced Information Systems Engineer-
ing CAiSE 1997, LNCS 1250, pages 203–216, Barcelona,
Spain, June 1997.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Aiding Program
Comprehension by Static and Dynamic Feature Analysis.
In Proceedings International Conference on Software Main-
tenance ICSM 2001, pages 602–611, Florence, Italy, Nov.
2001.

[8] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL - For-
mal Object-oriented Language for Communicating Systems.
Prentice Hall, 1997.

[9] J. Gargiulo and S. Mancoridis. Gadget: A Tool for Ex-
tracting the Dynamic Structure of Java Programs. In Pro-
ceedings International Conference on Software Engineering
and Knowledge Engineering SEKE 2001, Buenos Aires, Ar-
gentina, June 2001.

[10] R. Kazman, S. G. Woods, and J. Carrière. Requirements for
integrating software architecture and reengineering models:
CORUM II. In Working Conference on Reverse Engineer-
ing, pages 154–163, Hawai, USA, Oct 1998.

[11] R. Kollmann and M. Gogolla. Capturing Dynamic Program
Behavior with UML Collaboration Diagrams. In Proceed-
ings European Conference on Software Maintenance and
Reengineering CSMR 2001, pages 58–67, Lisbon, Portugal,
Mar. 2001.

[12] K. Lukoit, N. Wilde, S. Stowell, and T. Hennessey. Trace-
Graph: Immediate Visual Location of Software Features. In
Proceedings International Conference on Software Mainte-
nance ICSM 2000, pages 33–39, San Jose, California, USA,
Oct. 2000.

[13] A. Marburger and D. Herzberg. E-CARES research project:
Understanding complex legacy telecommunication systems.
In Proceedings 5th European Conference on Software Main-
tenance and Reengineering CSMR 2001, pages 139–147,
Lisbon, Portugal, 2001.

[14] A. Marburger and B. Westfechtel. Graph-based reengineer-
ing of telecommunication systems. In Proceedings of the
International Conference on Graph Transformations ICGT
2002, LNCS 2505, pages 270–285, Barcelona, Spain, Oct.
2002.

[15] L. Markosian, P. Newcomb, R. Brand, S. Burson, and
T. Kitzmiller. Using an enabling technology to reengineer
legacy systems. Communications of the ACM, 37(5):58–70,
1994.

[16] H. A. Müller, K. Wong, and S. R. Tilley. Understanding
software systems using reverse engineering technology. In
The 62nd Congress of L’Association Canadienne Francaise
pour l’Avancement des Sciences ACFAS 1994, pages 41–48,
Montreal, Canada, May 1994.

[17] U. Nickel, J. Niere, and A. Zündorf. Tool demonstration:
The Fujaba environment. In Proceedings of the 22nd Inter-
national Conference on Software Engineering ICSE 2000,
pages 742–745, Limerick, Ireland, Nov. 2000.

[18] T. Richner and S. Ducasse. Recovering High-Level Views
of Object-Oriented Applications from Static and Dynamic
Information. In Proceedings International Conference on
Software Maintenance ICSM 1999, pages 13–22, Oxford,
England, Sept. 1999.

[19] A. Schürr, A. J. Winter, and A. Zündorf. Graph grammar
engineering with PROGRES. In Proceedings 5th European
Software Engineering Conference ESEC 1995, LNCS 989,
pages 219–234, Barcelona, Spain, Sept. 1995.

[20] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons: Reading, MA,
1994.

[21] T. Systä. On the Relationships between Static and Dy-
namic Models in Reverse Engineering Java Software. In
Proceedings 6th Working Conference on Reverse Engineer-
ing WCRE 1999, pages 304–313, Atlanta, Georgia, USA,
Oct. 1999.

[22] T. Systä and K. Koskimies. Extracting state diagrams from
legacy systems. In Object-Oriented Technology ECOOP’97,
LNCS 1357, Jyväskylä, Finland, 1997.

[23] H. J. van Zuylen, editor. The REDO Compendium: Reverse
Engineering for Software Maintenance. John Wiley & Sons:
Chichester, UK, 1993.

[24] N. Wilde, C. Casey, J. Vandeville, G. Trio, and Hotz Dirk.
Reverse engineering of software threads: A design recovery
technique for large multi-process systems. Journal of Sys-
tems and Software, 43(1):11–17, 1998.

[25] N. Wilde and M. Scully. Software reconnaissance: Mapping
program features to code. Journal of Software Maintenance:
Research and Practice, 7(1):49–62, 1995.


