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Abstract

The UML is currently being used as the universal
technique for modeling object-oriented applications
across a wide range of domains. Developing a truly ade-
quate uniform modeling technique in the face of these
diverse domains seems an unsolvable quest and contrasts
domain specific software engineering activities.
Recently, many adaptations to the UML have been made
to reflect a domain’s world view. These adaptations often
exceed the UML's own extension mechanisms and result
in yet another urban UML slang.
However, domain-specifically adapting the UML meta-
model becomes increasingly important in the context of
model checking and code generation mechanisms. There-
fore solutions should be found to fully support metamode-
ling within the UML and UML CASE tools.
The paper discusses and evaluates the UML's inherent as
well as proprietary metamodeling approaches and will
provide domain driven ideas for a meta-modeling ap-
proach for a diversly used Unified Modeling Language

1. Introduction

After a wide variety of object-oriented modeling lan-
guages was created particularly in the 90‘s, the UML [3]
was introduced as a standard notation in order to overco-
me the upcoming confusion. To make it a general-
purpose modeling language usable in a rich spectrum of
application domains, the designers of the UML decided to
include a comprehensive set of modeling techniques for
analysis and design as well as structural and behavioral
modeling. In this way, they hoped to offer UML users all
support they require for their specific applications.

However, it was recognized early that it is difficult to
develop a single modeling language suiting the needs of
different application domains. This seems to contrast with
the goals of domain-specific software engineering which
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is concerned with the design of modeling languages that
adequately support the concepts of a specific domain.

As a compromise between the requirements for a stan-
dard notation and for domain-specific modeling, the UML
was designed as an extendible modeling language. In this
way, the users of the UML would be able to tailor the
language to their specific requirements by introducing
domain-specific model elements. On the other hand, these
extensions would be performed in a way that conforms
with the UML standard.

In this paper, we compare different approaches to ex-
tending the UML. We are interested in how the UML may
be extended such that
•  the extensions are easy to understand (readability),
•  the semantics of domain-specific concepts may be

expressed (expressive power),
•  the extensions may be made restrictive (restrictive

power),
•  domain-specific constraints may be easily checked

(checkability), and
•  the extensions still conform to the UML, i.e., they

must not redefine UML model elements in arbitrary
ways or define completely new UML elements (con-
formance).

Clearly, the requirements to extension mechanisms de-
pend on the respective application. In this paper, we study
applications that require domain-specific models with
well-defined semantics. This is crucial when models are
required to be executable or code has to be generated
from a model. Semantic domain modeling puts high de-
mands particularly on expressive and restrictive power as
well as on checkability. In addition, readability and con-
formance are general requirements that have to be
addressed anyway.

The rest of this paper is structured as follows: In Sec-
tion 2, we introduce a case study (workflow modeling)
that is used in Section 3 as a running example to present
and compare different approaches to extending the UML.
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Finally, Section 4 summarizes the comparison and draws
some conclusions.

2. A case study: workflow modeling

Below, we introduce a case study that will be used for
discussing various ways of extending the UML in the rest
of this paper. The case study is drawn from the area of
workflow management for development processes in
engineering. In particular, we have studied software engi-
neering processes; the example presented below is taken
from this domain. The details of modeling software engi-
neering processes do not matter very much here; the inte-
rested reader may instead refer to [8].

We have chosen this example for multiple reasons. It is
realistic and studied by a variety of research groups (e.g.
[6]). It is out of the scope of mainstream UML applica-
tions and thus not supported within the UML meta model
or available UML CASE tools. In addition, it falls into a
group of application domains for the UML that are de-
pendent on rigorous model checking and code generation
capabilities, because workflow models are usually simu-
lated or executed within a distributed environment.

A workflow management system (WfMS) is a system
that defines, creates and manages the execution of
workflows through the use of software, running on one or
more workflow engines, which is able to interpret the
process definition, interact with workflow participants
and, where required, invoke the use of IT tools and appli-
cations [10]. The process definition defines the steps
(activities) to be executed as well as their control flow and
data flow relationships.

Workflow management systems have been success-
fully applied for routine processes e.g. within office au-
tomation applications. In contrast to these, development
processes are highly creative and cannot be planned fully
in advance. The clear separation between planning (build)
and execution (run) of a workflow, as implemented in
classical WfMSs, cannot be upheld in this context. Our
approach, called  dynamic task nets [7], takes this chal-
lenge into account and allows for the interleaved plan-
0-7695-0981-9/01 $1
ning, execution, analysis and monitoring of a workflow.
We will only roughly sketch the functionality of our

WfMS in this paper by looking into a process for handling
change requests of a software system as presented in
Figure 1. Each box denotes a task, the execution state of
which is represented by an icon. Solid thin lines stand for
control flows which determine the order of task execution.
Control flows are refined by data flows (dashed lines),
which are only shown between two tasks (Change Mo-
dule B and Test B). Data flows connect output and input
parameters of tasks (black and white circles, respective-
ly). Finally, feedback flows (solid thick lines) indicate
cycles within the development process.

Within the sample process a redesign of the application
has been performed after the change request has been
analyzed. According to the new design changes have to be
applied to modules B and D (hatched filling) and a new
module C has to be implemented. At this time new tasks
for changing or implementing these modules and for
bottom-up testing of the changed system parts are created
within the task net. Discovered errors during the test can
be reported back to the responsible task through a feed-
back relationship which causes another replanning step

Looking at this process it becomes obvious that we are
dealing with continuously evolving structures of interre-
lated process objects.

This is where the UML plays an important role. So far,
we have given an example of a software process instance
represented by a dynamic task net that is maintained by
the workflow engine. To drive the workflow engine, a
process definition is required, i.e., the processes to be
supported have to be modeled. Why not use the UML for
this purpose? In particular, the above sketched process
evolution can be modeled in a very natural way using an
object-oriented approach: Tasks are represented by ob-
jects which are dynamically created, connected by flow
relationships, executed, etc. Furthermore, using a standard
notation makes it easier to define and communicate
process models.
We apply the UML to software process modeling by
using class diagrams for structural modeling. Within class
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Figure 1 – A sample dynamic task net for an extension request handling
process
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diagrams classes of tasks and control, data and feedback
flow associations are modeled which constrain the evolu-
tion of instance-level task nets as shown in Figure 1. State
and collaboration diagrams are used for behavioral mode-
ling which will not be discussed in the following [8]. A
UML model is transformed into a an executable model
intrepretable by the workflow engine [15].

As an example, Figure 2 displays a class diagram for
the sample change request process introduced above. The
screenshot was taken from Rational Rose, which we have
employed as  a process modeling tool (further details will
be discussed in the next section).  In the class diagram, we
have used stereotypes to distinguish between different
kinds of model elements such as task classes (stereotype
<<Task>>), input and output parameter classes (white
and black circles, respectively), and associations for con-
trol flows (<<cflow>>), data flows (<<dflow>>), and
feedback flows (<<fback>>).

The class diagram states that in the general case a
change request process is composed of exactly one Ana-
lyze Request and exactly one Redesign task, respecti-
vely. The latter is followed by an arbitrary number of
Implement Module and Change Module tasks. With
respect to testing, the class diagram does not distinguish
between tests for changed and new modules. The reflecti-
ve control flow association serves to express the bottom-
up order of testing. Feedback from testing to implementa-
tion is represented by a feedback flow association (please
note that the class diagram contains only a single example
of a feedback association). The dynamic task net in Figure
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1 is a valid instance of this class diagram.
It is important that this kind of application requires not

only extensions, but also restrictions of the UML. The
extensions are used to offer the elements of the underly-
ing process metamodel to the user. The user has to stick to
the underlying metamodel (dynamic task nets); otherwise,
it is impossible to generate code for driving the workflow
engine. Thus, using the UML as a modeling frontend to a
WfMS puts high demands on expressive and restrictive
power as well as on checkability.

3. Metamodeling approaches

The UML is frequently used for software and compo-
nent development and database schema design [13]. As a
consequence, UML CASE tools often ship with C++,
Java and IDL code generators and schema generators for
common database management systems.

However, the UML becomes increasingly important as
a modeling language across various domains like multi-
media application design, mechanical engineering or
workflow modeling [6] as in our case. Since neither the
UML nor UML-based CASE tools can incorporate ade-
quate support for every possible development domain,
metamodeling facilities are of great importance.

A domain-specific metamodel serves as a formal defi-
nition of an extension to the UML for the modeling do-
main. It adds more semantic depth to the standard meta-
model and thus builds a foundation for model analysis
and code generation. Providing good metamodeling sup-
Figure 2 – A sample class diagram for the extension request process
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port within the UML enables solution developers to seam-
lessly integrate new extensions into CASE tools and build
special-purpose solutions outside of the standard UML
applications.

However, the support for metamodeling within the
UML is weak and while many CASE tools are open to the
implementation of manifold extensions they do not have
an inherent metamodeling and corresponding model
checking support.

Driven by our approach to workflow modeling in the
UML the following subsections present four options for
metamodeling and corresponding tool support. Section
3.2 presents a pragmatic implementation-driven approach
to model checking and code generation with respect to a
given metamodel. An approach for metamodeling relying
on the UML’s inherent extension mechanisms is presen-
ted in Section 3.3. Sections 3.5 and 3.6 discuss two alter-
native methods for controlled extensions of the UML
metamodel itself.

The evaluation of  an approach is based on the follo-
wing aspects:
•  Readability: A metamodel should be human readable

and understandable as it defines the syntax and se-
mantics of a modeling language. Readability enhan-
ces modeling comfort and acceptance for a novel
UML application.

•  Expressive Power: All metamodel aspects should be
expressable with the approach.

•  Restrictive Power: A domain-specific metamodel
should not only extend the UML metamodel but also
restrict it to meaningful structures with respect to the
domain (e.g. it makes no sense to allow multiple in-
heritance in a design model’s class diagram if Java-
code is to be generated from the model).

•  Checkability: Tools should be able to check a model
for consistency with a given metamodel. This is
especially important, if proprietary code generators
are to be implemented. Therefore the metamodel
must have well-defined semantics.

•  Changeability: Domains and thus metamodels evolve
continuously. Changes should be performed in a
controlled way and have local impact only.

•  Conformance: A metamodeling approach should not
allow for arbitrary UML extensions which result in
UML dialects hardly supportable by tools. Within
this paper we define conformance as follows: A do-
main-specific metamodel SM conforms to the UML
metamodel UM, if a valid instance of SM is a valid
instance of UM after the domain-specific metaclasses
of every model element in the instance of SM are re-
placed by the corresponding metaclass in UM that
they extend. Inherent to this definition are the follo-
wing prerequisites for every domain-specific meta-
model: New metaclasses have to have a (transitive)
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superclass within the UML metamodel and instances
of the new metaclasses have to be substitutable for
instances of the original metaclass.

An approach fulfilling all of these issues goes far
beyond the metamodeling facilities included within the
UML (cf. Section 3.3). Especially the aspects concerning
readability, restrictive power and checkability are totally
neglected. Because of the rather mediocre metamodeling
facilities within the UML, a definition of conformance
was obsolete. If full-fledged metamodeling support is to
be integrated into the UML an appropriate definition of
conformance is very essential.

3.1. Classification of stereotypes

The UML contains three extension-mechanisms: ste-
reotypes, tagged values, and constraints, of which the
first two are supported by the market-leading UML CASE
tool Rose. In [2] a classification schema for the use of
stereotypes as a metamodeling facility is presented. Four
different kinds of stereotypes are distinguished which will
be described in the following.

Decorative stereotypes are pure manipulations of the
concrete syntax and are used to replace a symbol of a
model element. They are used to adapt the notation of
UML to a specific domain. The black circles of Figure 2
are decorative stereotypes if no further restrictions are
formulated on their usage. In that case they remain regular
UML classes.

Descriptive stereotypes introduce new pragmatic ele-
ments that do not change the semantics of the UML. De-
scriptive Stereotypes are a secondary classification of a
valid UML metamodel element. If we call the black cir-
cles from Figure 2 output parameter classes we provide a
new pragmatic element in the context of workflow mode-
ling. However, within a UML model a class stereotyped
with a descriptive stereotype remains an instance of the
original UML metamodel element. No constraints regar-
ding the syntax or semantics are added to the original
metamodel element by providing a set of descriptive
stereotypes for it.

 Restrictive stereotypes are new semantic elements ad-
ded to the UML. They are first class members of the new
language and include a formal definition of syntactical
and semantical constraints regarding their usage within  a
model. However, they do not change the base language
and its semantics, they can only extend it. The constraints
of the stereotyped metamodel element apply to the newly
introduced metamodel element as well. An instance of a
restrictive stereotype remains a valid instance of the ste-
reotyped original metamodel element.

Redefining stereotypes provide the means to replace
any given metamodel element through a new one and
defining a completely different set of constraints for it.
0.00 (c) 2001 IEEE 4
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This induces radical changes in the original language and
results in a new modeling language being defined.

Within this and the following subsections descriptive
and restrictive stereotypes will be discussed. Decorative
stereotypes are omitted from the discussion because they
lack any kind of metamodeling support; redefining ste-
reotypes are omitted because they alter the UML and
create a UML dialect which can by default not be sup-
ported by a CASE tool. The use of redefining stereotypes
violates conformance.

3.2. Descriptive stereotypes

Since CASE tools like Rose do not support anything
more sophisticated than descriptive stereotypes, our first
approach to incorporate the metamodel of dynamic task
nets into the UML (and into Rose) was to map metamodel
classes to descriptive stereotypes. This is a rather simple
task: Every metaclass of the modeling domain, like task,
input and output parameter, controlflow association etc. is
represented by its own stereotype. Some of these stereo-
types are symbolized by an own graphical symbol which
enhances readability of conforming models.

This approach leeds to a graphically and pragmatically
enhanced tool, a diagram of which was presented in
Figure 2. The model structure is kept in a stereotyped
package hierarchy and a process definition is modeled
structurally within a stereotyped class diagram.

However, the enhanced tool does not support the me-
tamodel by forbidding meaningless structures with respect
to the metamodel or the use of unsupported metaclasses
of the UML. The process modeler can freely enter any
kind of valid UML class diagram. Bearing this in mind, it
is impossible to generate a formal, interpretable process
definition from the UML model without providing model
checking support as well.

We overcame these deficits by handcoding a model
checker and code generator via the OLE Automation
Interface provided by Rose. Code generation can only
start if model checking returned successfully and can thus
rely on a consistent model with respect to the metamodel
of dynamic task nets.

With respect to our evaluation criterea we can state the
following: On the negative side we find the readability,
changeability, and checkability characteristics of this
metamodel-programming approach based on descriptive
stereotypes. Since the metamodel is hardcoded into the
model checker, it is hard to understand and requires pro-
gramming skills to introduce changes. Checkability is
inherently supported, since the model checking algorithm
represents the metamodel. However, the provision of
model checking means a lot of work which has to be
repeated for every metamodel.

Positive characteristics of this approach are its expres-
sive and restrictive power. The expressive power is only
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limited by the capabilites of the underlying CASE tool,
since any syntactical or semantical constraint can be
hardcoded into the model checker. These constraints are
only checked on demand. A more suitable approach to
checkability would be the realization of eager checks, e.g.
in the form of a syntax directed editor. The approach is
restrictive, since model checking can reject the use of any
UML metaclass. Conformance is supported by default,
because in the context of Rose descriptive stereotypes can
only be defined for a given UML metaclass. Thus every
stereotyped model element remains an instance of a valid
UML metaclass.

The use of descriptive stereotypes is widely spread.
Especially in contexts, where a new modeling methodolo-
gy is to be introduced, graphical and pragmatic enhance-
ments play the key role. Model checking and code gene-
ration are of no primary interest in these cases. [1] and [9]
introduce modeling methodologies for hypermedia appli-
cation design and real-time systems modeling in this
fashion. Another application area for descriptive stereoty-
pes stems from the mapping of formally defined pro-
prietary modeling languages onto the UML. In these
cases, the formal metamodel lies outside of the tool [16].

3.3. Restrictive stereotypes

Handcoding the metamodel in a given programming
language can definetely not be a suitable approach to
metamodeling, although it is the only alternative regar-
ding the capabilities of today’s CASE tools. However, the
UML itself provides more expressive metamodeling
techniques than descriptive stereotypes. For every ste-
reotype a set of tagged values can be defined which can
be interpreted as metalevel attributes. Additionally, con-
straints can be formulated on a stereotype (with e.g. the
OCL [17]) and its context with respect to the stereotyped
metaclass. In this fashion valid structures can be defined.

If a stereotype is constrained it is called restrictive be-
cause it may not be placed within every valid UML con-
text. Rather, the associations and (stereotyped) instances
of other metaclasses within the context of the stereotyped
element will be checked for validity. Additionally, prede-
fined values for metalevel attributes can be fixed through
constraints.

Assuming available CASE tool support, using restric-
tive stereotypes has the inherent advantage of not having
to code model checking for every metamodel separately.
Rather, the constraints can be specified declaratively and
checked automatically by the tool.

Figure 3 contains a small cutout of a metamodel for
dynamic task nets based on restrictive stereotypes. In
analogy to descriptive stereotyping we need a new ste-
reotype for every domain-specific metaclass which is
shown for tasks and controlflow associations at the top of
the figure. For every stereotype a set of constraints is
.00 (c) 2001 IEEE 5
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<<Stereotype>>
Task

baseClass := Class

<<Stereotype>>
Cflow

baseClass := Association

Cflow
-- binary assocation

self.connection.size = 2
-- cflow associates two elements of type Task

self.connection->forall(ae: AssocationEnd | ae.type.oclisTypeOf(Task))
-- Association has no aggregation ends and is navigable from both
-- ends

self.connection->forall(ae: AssociationEnd |
ae.aggregation=none and ae.isNavigable = true)

-- One end depicts the source role of the association
self.connection->exists(ae: AssociationEnd | ae.Name="src")

-- Another end depicts the target role of the association
self.connection->exists(ae: AssociationEnd | ae.Name="trg")

Task
-- Only one controlflow association between a pair of tasks

self.associationEnd->select(ae | ae.Name="src").association.associationEnd
->select(ae | ae.Name="trg").type->asBag->forall(t1, t2 | not t1=t2)

Figure 3 – Definition of restrictive stereotypes
defined restricting the use of this stereotype to meaningful
structures with respect to dynamic task nets. In this case,
the following restrictions are expressed: A controlflow
association (stereotype Cflow) is a binary, directed and
bidirectionally navigable association with no aggregation
ends. It connects two elements of stereotype Task. Bet-
ween every pair of tasks there may only be one con-
trolflow association with the same direction. The corre-
sponding constraints are formulated on the stereotypes
Cflow and Task, respectively.

The metamodeling approach using restrictive stereoty-
pes lacks readability even though the gain over hand-
coded constraints is obvious.

The expressive power of OCL-constraints is sufficient
for most purposes even though not all constraints of the
UML metamodel itself could be properly expressed with
the OCL [12]. In contrast, the restrictive power of this
approach is not sufficient. Restrictive stereotypes are pure
extensions to the UML metamodel which means model
checkers based on constraint interpretation would not
reject the use of any valid UML construct within a model.
However, with stereotyped namespaces (e.g. packages)
and defined constraints for each namespace restricting the
valid stereotypes for contained elements, restrictive power
might be adequate for some cases. For each package-
stereotype the stereotypes of contained elements are pre-
cisely defined. A task package (<<TaskP>>) may con-
tain other task packages, interface and realization packa-
ges (<<InterfaceP>>, <<RealizationP>>); an interface
0-7695-0981-9/01 $10
package may contain task and parameter classes as well
as some stereotyped associations and so forth.

The checkability of constraints is currently limited,
since the OCL does not have defined execution semantics
(although this topic is adressed by the research commu-
nity, [14]). Providing these semantics and implementa-
tions within CASE tools would lead to full checkability of
restrictive stereotypes.

Since constraints are locally defined for one stereotype
changeability is good. Metamodels expressed using the
restrictive stereotype approach conform to the UML, be-
cause only predefined extension mechanisms of the UML
are used.

Restrictive stereotypes are used in cases where rigo-
rous semantics have to be defined for modeling elements.
The predefined extensions for software development and
business modeling presented in the UML specification
document [12] are metamodels defined through restrictive
stereotypes, although restrictions in these cases are de-
fined through tables rather than OCL constraints. Within
these tables the source and target types of stereotyped
associations are constrained. However, these tables can
easily be translated into OCL constraints which would
enable the definition of valid cardinalities for these asso-
ciations, too.

3.4. Classification of metamodel extensions

Due to the restrictions of the UML’s inherent metamo-
deling mechanisms, especially concerning modeling com-
.00 (c) 2001 IEEE 6
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fort, numerous domain-specific metamodels have been
defined by extending the UML’s own metamodel with
new metaclasses and meta-associations. The advantage of
this approach is the possibility to use class diagrams for
the definition of many structural constraints rather than
OCL.

Extending the UML’s metamodel means adding new
metaclasses and meta-associations to it. Since the UML
metamodel itself is a valid instance of the MOF meta-
metamodel, extending the UML metamodel means defi-
ning a new modeling language by instantiating a new
MOF model.

We have to distinguish between two cases of such
metamodel changes: In the first case arbitrary metaclasses
can be implanted into the original metamodel, regardless
of their superclass. Meta-associations may be defined
between any set of metaclasses regardless whether they
are of a refining nature or completely new to the metamo-
del. In the second and more restrictive case, new me-
taclasses are only valid if they have a superclass within
the original UML metamodel. Meta-associations may
only be introduced if they refine a meta-association from
the original metamodel. In the first case, which we will
call uncontrolled in the following, a UML dialect is crea-
ted, where the semantics and notation of new elements
can not be interpreted by any CASE tool. In the latter
case, which we will call controlled, an instance of a newly
created metaclass can be substituted for an instance of an
original metaclass. The new metaclass thus provides at
least the semantics of its original superclass and can thus
be handled as such by any UML CASE tool.

In the following section we present regular metamodel
extensions as a means to define a domain metamodel. We
call these extensions regular, as they start out with the
existent UML metamodel and define extensions to it. A
different approach is taken by restrictive metamodel ex-
tensions which imply the full restrictive power needed by
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application domains like workflow modeling. In both
cases we will shortly discuss the uncontrolled case, even
though it violates conformance in both cases and is un-
supportable in UML CASE tools.

3.5. Regular metamodel extensions

As an example the cutout from the dynamic task nets’
metamodel concerned with controlflow associations as
presented in Section 3.3 formulated through controlled
metamodel extensions is shown in Figure 4 (UML me-
taclasses are shaded gray). Some new metaclasses are
introduced: A metaclass Task inheriting from Class,
metaclasses TaskAssoc, Cflow and Fback inheriting
from Association and two new metaclasses defining
specialized AssociationEnds namely source and target
ends for a directed, navigable association.

Introducing a new metaclass as a subclass to an origi-
nal UML metaclass is equivalent to defining a stereotype.
The benefit lies in the ability to use regular class diagrams
to define structural constraints on the new model ele-
ments.

In the example we define meta-associations that allow
for the connection of one task association to exactly one
source association end and one target association end. In
addition, we specify that a task class may be connected by
an arbitrary number of source and target association ends.
These new meta-associations implicitly refine original
meta-associations (controlled case). Specifying the meta-
associations in this way is superfluous, since the new
metaclasses inherit these meta-associations from their
respective UML metaclass. Thus, the newly introduced
meta-associations between the new metaclasses do not
define any structural restrictions with respect to the em-
bedding of their instances into a model. Only if depen-
dencies between the original meta-associations and their
Classifier

Class

AssociationEnd Association

Task

TaskAssoc

Cflow Fback

SrcEnd

TrgEnd

1

1

0..*

0..*

connectiontype

2..*

connsrc

conntrgtasktype

{replaces}{replaces}{replaces}{replaces}

SrcEnd
self.Name = "src"
self.aggregation = none
self.isNavigable = true

Task
self.SrcEnd.TaskAssoc.conntrg.tasktype->asBag

->forall(t1, t2 | not t1 = t2)

Figure 4 – Example for metamodel extensions
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replacements are defined together with a replaces-
constraint, an effective restriction is established. In this
case e.g. a task class may not be connected by any asso-
ciation end other than the new source and target ends.

Using UML metamodel extensions to implant a do-
main-specific metamodel into the UML still does not free
us from specifying constraints. For example the metaclas-
ses SrcEnd and TrgEnd have to be further specified by
predefining some of their attribute values. The constraint
denoting the uniqueness of a controlflow association
between two tasks still has to be formulated in OCL as
well. However, with the extended metamodel it is easier
to formulate and read.

Metamodel extensions enhance readability of the mo-
del and the OCL constraints. Using class diagrams to
define structural constraints is the natural choice in the
context of the UML and it provides a modeler with a
notation he is used to.

In the controlled case expressive power is equivalent to
restrictive stereotypes. The uncontrolled case even ex-
ceeds the expressive power of redefining stereotypes,
because arbitrary metaclasses and meta-associations bet-
ween metaclasses may be defined. Its expressive power is
unrestricted but the result is a modeling language out of
the scope of UML.

Restrictive power is equivalent to restrictive stereoty-
pes. All of the structural constraints included in class
diagrams could be formulated in OCL just as well. Un-
fortunately, this means that regular UML model elements
cannot be prohibited within a model.

Changeability is on the same level as with any rigo-
rously defined domain-model written in UML, since the
same language constructs are used on metamodeling and
modeling level.

Conformance to the UML metamodel is only given in
the controlled case, where instances of every newly intro-
duced metaclass and meta-association can be handled as if
they were instances of their respective UML metaclass.
Of course checkability is lost if a tool cannot interpret and
support the metamodel.

Metamodel extensions are generally used in both the
controlled and the uncontrolled fashion. [11] describes a
metamodel extension to support reuse and evolution of
model components through reuse contracts. This meta-
model extension is controlled, since all introduced meta-
associations refine existing meta-associations from the
UML metamodel. However, these dependencies are not
explicitly included in the extended metamodel. In con-
trast, [13] deals with the use of class diagrams for object-
oriented database design. Metamodel extensions are ne-
cessary to allow for the specification of integrity con-
straints. The presented metamodel extensions are uncon-
trolled, because meta-associations exist that are not refi-
nements of valid UML meta-associations.
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An approach to use the UML’s package concept to de-
fine multiple metamodel extensions is described in [4]. It
does not include a discussion of whether controlled or
uncontrolled extensions are to be supported as it focusses
on the addition and redefinition of attributes in subme-
taclasses and the joining of two metaclasses in cases of
multiple package inheritance.

3.6. Restrictive metamodel extensions

The weakness of the approaches discussed so far is that
automatic model checking can only be done locally. This
means that it can be checked whether an instance of a
domain-specific metaclass is used correctly within the
model but it cannot be checked whether the complete
model is consistent with the domain’s metamodel, becau-
se it may contain arbitrary model elements of the UML.
In the context of code generation the most important
requirement is the consistency of a model regarding a
given domain-specific metamodel. This consistency is
usually reached by providing model checking support
within the modeling tool. In the context of the UML au-
tomatic model checking could be supported by CASE
tools, if a metamodeling approach were used that most of
all allows to formulate restrictions on the original UML
metamodel.

In this section we introduce a metamodeling approach
based on metamodel extensions as presented in Section
3.5 but enhances its restrictive power to meet code gene-
ration requirements. The approach consists of three main
ideas:

1. Make the UML metamodel consist of abstract and
thus non-instantiable metaclasses only.

2. Define instantiable metamodels on the basis of this
abstract metamodel by using generalization relati-
onships between packages.

3. Make it obligatory for every instantiable metaclass to
have an abstract superclass from the UML metamo-
del and every newly introduced association to be a re-
finement of an original association.

Figure 5 shows how the common UML metamodel and
other domain-specific metamodels can then coexist in
different packages. In the context of our workflow mana-
gement activities we defined additional metamodels for
product and resource management. Each of these meta-
models is independent of the others and can be used sepa-
rately. However, in order to provide highly integrated
workflow management the three metamodels can be inte-
grated. For this purpose we define a fourth package for
integration aspects. This package is derived from the three
afore mentioned metamodel packages.

Adequate tool support could then allow for the selec-
tion of current metamodel packages and – on the basis of
.00 (c) 2001 IEEE 8
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instantiable UML

 abstract UML

workflow managment product management resource managmnt.

integration aspects

<<abstract metamodel>>

<<metamodel>> <<metamodel>> <<metamodel>> <<metamodel>>

<<metamodel>>

Figure 5 – Metamodel packages
interpreters for class diagrams and OCL-constraints –
provide automatic model checking.

This metamodeling methodology has many inherent
advantages: Readability is good, since metamodels are
well separated and self-contained and their interdepen-
dencies are visible at first glance in diagrams as presented
in Figure 5. Class diagrams can be used as a mechanism
to define structural constraints. These features enhance
changeability as well.

The expressive power is equivalent to regular meta-
model extensions as described in subsection 3.5 but re-
strictive power is much greater. From the presented ap-
proaches only this one allows for the rejection of standard
UML classes, which provides the optimal basis for auto-
matic model checking. With this approach models can be
checked globally for consistency with the current meta-
model. Conformance with the UML is enforced, since
every metaclass in every metamodel has to be a specia-
lization of an original abstract metaclass and the intro-
duction of associations into metamodels is limited accor-
ding to the definition of conformance.

4. Conclusion

We have presented and compared different metamode-
ling approaches for the UML. To this end, we have used a
case study from software process modeling in which the
UML is employed for defining process models from
which executable code may be generated for driving a
workflow engine. More generally, we have investigated a
class of UML applications which is characterized by
domain modeling and code generation. Domain modeling
demands for metamodel extensions, while code generati-
on in addition requires the enforcement of restrictions.

For this application class, we evaluate the alternatives
presented in the previous section as follows:

•  Descriptive stereotypes serve to express the elements
of  the underlying domain metamodel. With the help
0-7695-0981-9/01 $10.
of descriptive stereotypes, the user may create UML
models using the elements of the domain-specific
metamodel. Basically, the user is supported at a
pragmatic level through the use of icons, colors, etc.
However, the domain-specific metamodel is not de-
fined explicitly; rather, it must be hardcoded into an
analysis tool which performs model checking in a
batch-like fashion and on demand only.

•  Restrictive stereotypes go beyond the descriptive
ones by attaching constraints to stereotyped model
elements. These constraints are defined declaratively
instead of being hardcoded. If appropriate tool sup-
port is available, they can be checked or even en-
forced. This would obviate the need for a handcoded
model checker. Unfortunately, restrictive stereotypes
result in an unreadable metamodel definition, as me-
tamodels are expressed by textual OCL constraints.

•  Regular metamodel extensions make use of full-
blown metamodel support. Metamodels are defined
within metaclass diagrams, which may still be sup-
plemented by constraints. In the case of restrictive
stereotypes, the metamodeler essentially would draw
a metaclass diagram (maybe with paper and pencil)
and then encode it with the help of OCL constraints.
It is much easier and more natural to base metamo-
deling on metaclass diagrams, as it has been done in
meta-CASE tools for a long time before the UML
was introduced. Without further provisions, metamo-
del extensions only offer additional model elements,
but they do not exclude the existing ones.

•  Restrictive metamodel extensions go one step further.
By making the standard UML model elements ab-
stract, their instantiation may be prohibited. A do-
main-specific metamodel may then introduce instan-
tiable model elements. This alternative is superior to
the previous one with respect to its restrictive power.

While the designers of the UML have introduced ste-
reotypes as a means for „poor man´s metamodeling“,
00 (c) 2001 IEEE 9
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there are indeed applications that call for first-class me-
tamodeling. This is not yet supported in the UML (1.3),
but there are activities going on working toward that goal.
This paper may contribute to these activities by contra-
sting different metamodeling approaches, but also by
proposing controlled restrictive metamodel extensions,
which is – to the best of our knowledge – an original
contribution. The mechanisms we propose for control are:

•  All metaclasses must be specializations of existing
ones (i.e., of metaclasses defined in the UML stan-
dard).

•  Likewise, extensions must not introduce new meta-
associations; rather, we allow only for the replace-
ment of already existing meta-associations.

•  In the case of restrictive metamodel extensions, exi-
sting metaclasses are defined as being abstract so
that their instantiation can be prohibited.

Unfortunately, current CASE tools such as Rational
Rose offer only limited metamodeling support (descripti-
ve stereotypes). This paper serves to reinforce the argu-
ments already given in [5] that UML CASE tools should
provide first-class metamodeling.
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