A Delegation Based Model for Distributed
Software Process Management

Simon Becker, Dirk Jéger, Ansgar Schleicher, Bernhard Westfechtel

Aachen University of Technology
Department of Computer Science ITT
D-52056 Aachen, Germany

{sbecker| jaeger|schleich|bernhard}@i3.informatik.rwth-aachen.de

Abstract. Complex development processes which cross organizational
boundaries require specialized support by process management systems.
Such processes are planned in a top-down manner. A suitable coopera-
tion model for these processes is the delegation of process parts. Because
the client and the contractor of a delegation may be independent or-
ganizations they may have diverging interest concerning autonomy of
process execution, information-hiding, control, etc. We propose a con-
cept for delegating process parts which takes these interests into account
and describe how delegation is implemented in the process management
system AHEAD.

Keywords: process modeling, process management, interorga-
nization cooperation, delegation, distributed processes

1 Introduction

Developing complex technical products has become a challenging task which can
only be handled by the cooperation of many individuals. A process management,
system (PMS) supports the manager to control such a development process
which involves a large number of developers. The skills required for developing a
product can be quite diverse and thus the employees involved in the development
processes can belong to different organizational units. Those can be different
branches of a company or even different companies which may be geographically
dispersed. Each organization conducts its part of the process, which is guided by
the organizations’ local PMS. These local PMS must be integrated to establish
the interorganizational processes.

Integration of processes can follow different models [19,1]. Which of these is
appropriate depends on the application domain. For companies that e.g. aim at
integrating processes along a supply chain, chained execution is a good model.
In contrast to this, we regard a top-down approach more suitable for model-
ing development processes in which one organization acts as a supervisor and
delegates parts of the process to other organizations.

Again, several models can be applied here. Taking a black-box approach, the
process at the delegating organization simply triggers the execution of a process
at the contractor organization without having knowledge about the internals

of this process or receiving feedback on its progress. This approach is hardly
applicable because it has been recognized, that the client-contractor relationship
is more complex in reality. The delegation of a task should also include guidelines
how the task has to be performed, milestones to monitor the progress of the
project, etc. An adequate model for the delegation of processes must take into
account additional requirements like security, information-hiding, and autonomy
of process execution [18, 14].

In this paper we present an approach that allows for the delegation of parts
of development processes which are modeled as process nets in a PMS. The parts
can be selected on the fly which gives the manager a great flexibility in deciding
which tasks he wants to delegate. The manager can monitor the execution of
the delegated parts without seeing the details of their realization. In this way,
the approach satisfies the needs of the client as well as of the contractor of a
delegation. Moreover, the system automatically ensures the integration of the
process parts and the consistency of the overall model which results in a tighter
coupling of the participating PMSs than it is usually realized in federated process
centered software engineering environments (PSEE) [1].

The rest of this paper is structured as follows: In Section 2 we will introduce
the scenario of delegation in development processes and discuss the requirements
which have to be fulfilled by a PMS to support delegation. Section 3 briefly
introduces the process modeling language of dynamic task nets. In Section 4 we
describe how delegation is supported by the AHEAD management system which
uses dynamic task nets as process modeling language. Section 5 discusses related
work and Section 6 concludes the paper.

2 A Concept of Delegation

Interorganizational processes emerge whenever organizations agree to cooperate.
The subject of the cooperation and the relationship between the cooperating
organizations determine the nature of the interorganizational process and how it
should be supported by a PMS. Therefore, we will start with a short discussion
of possible cooperation scenarios and point out in which of these delegation is a
suitable cooperation model.

Our approach does not focus on routine business processes. Organizations
which want to cooperate by integrating their business processes, e.g. along a sup-
ply chain, usually do not delegate process parts. The processes to be integrated
already exist and have to be chained. Most of the work on interorganizational
workflows deals with the chaining of existing workflows.

In contrast to this, we are interested in supporting development processes
which are highly dynamic and can not be planned in advance in every detail but
only on a coarse-grained level. Which activities have to be performed in detail
depends on the results of previous activities. For example, which coding activities
are needed in a software project depends on the design document which is the
result of a design activity.

This kind of planning can only be done in a top-down manner. Therefore,
one of the cooperating organizations is responsible for it and acts as a supervisor
of the interorganizational process. Such a situation naturally arises when an
organization is the initiator of a development process and acts as the client
of other organizations which are hired as contractors. The client organization
delegates parts of the process to its contractors, which enact these process parts.
We will use the terms client and contractor in the following to refer to the roles
involved in a delegation. An organization may participate in more than one
delegation in different roles. A contractor can delegate parts of its process to
subcontractors. In this case the contractor acts as a client of his subcontractors.

In the most general case, the client and the contractor are independent orga-
nizations which are only connected by the delegation. Both may have different
interests, e.g. the client wants the contractor to produce a product as good as
possible while the contractor tries to produce a product which meets but not
exceeds the agreed specification. Likewise, the client is interested in the over-
all result of the process while the contractor does not care about it, etc. Our
goal was to create a model of delegation which takes into account the interests of
client and contractor. This proved to be hard because these interests are in some
cases conflicting. As a result, we have defined the following set of requirements
along which we constructed our system:

— Delegation of processes fragments. The system should be able to delegate
process fragments consisting of several tasks including their relationships.
This means that the client should be able to specify the steps of the processes
on a coarse-grained level. For example, software development projects for
German government organizations have to use the V-Model. A client can
enforce this by specifying the phases of this model as top-level activities of
a delegated process.

— Delegation as a contract. The delegation of a part of a process should be
viewed as a contract. Once the client and the contractor have agreed to it,
none of them is entitled to change the delegated process independently.

— Control of process execution. The client should be able to monitor the ex-
ecution of the delegated tasks in his own PMS. The delegated tasks are
milestones of the project and their states provide the client with feedback
concerning the progress of the delegated part of the process.

— Refinement by contractor. The contractor can refine each of the delegated
tasks as long as the delegated coarse-grained process remains unchanged.
This requirement reflects that each organization has its specific standards
and processes to realize certain tasks.

— Autonomous ezxecution. The contractor should autonomously execute the
delegated process fragment. This requirement is to be understood in two
ways. Firstly, on the conceptual level it means that the contractor has full
control over the execution of the delegated part of the process. The client
PMS merely provides a read only view on it but cannot be used to influence
it (e.g. by performing operations on the delegated tasks). Secondly, with
regard to the coupling of the management tools involved, it means that the

Client Contractor
o Define interorganizational process

g Exchengestate = | o me—
BErfe@s X . ae— ni information and = C i@ X - @ S
R e : documents [e

Run-time integration

e Rgister with client
system

< —|

Textual
process
represen-
9 Export to file tation

|

9 Select parts to be delegated

Fig. 1. Steps of delegation

contractor PMS should be able to execute its part of the process without
contacting the client PMS.

— Information hiding. While the client wishes to monitor the delegated process
part, the contractor usually does not want him to see all the details of process
refinement. Therefore, the contractor PMS should be able to hide levels of
process refinement and, in the extreme case, provide the client PMS only with
information concerning the coarse-grained tasks of the original delegation
process.

— Preservation of execution semantics. An important requirement of delega-
tion is that in the contractor PMS the delegated process should be executed
exactly as it would be in the client PMS. This requirement is naturally ful-
filled if both systems use the same PML. However, there are many different
process modeling formalisms around, and in general, systems may cooper-
ate which use different PMLs. In this case, a translation step is required.
However, the translation usually is not trivial. Though each net-based PML
has modeling elements for activities, documents, control flow, etc. their se-
mantics may be different. A naive and direct translation between two PMLs
might result in a translated net having the same topology as the original one
but exhibiting a completely different behavior. Thus, our approach as far as
it is presented in this paper is restricted to the homogeneous case in which
client and contractor use the same PML.

Figure 1 shows the steps in which a delegation is performed. At first, the
process manager of the client specifies the interorganizational process includ-
ing the parts to be delegated to contractors in the following. In Step 2, parts
which are suitable for delegation are selected. Here, suitable is to be understood
with regard to the real-world process. In addition, the selected parts have to
satisfy some conditions with regard to the semantics of the employed modeling
formalism, e.g connectedness, which will be discussed in Section 4.

The selected part of the process is exported to a file in Step 3. The exported
elements of the process net are not removed form the client’s PMS but are
tagged as being exported. These parts of the net cannot be changed anymore
by the client, except for that he can revoke the export at all. We think that an
asynchronous way of communicating the delegated process via a file should be
preferred, because the contractor can be unknown at this time. For example, the
exported process description can be published at electronic market places along
with a call for tender. As soon as a contractor is found, the process description
becomes part of the contract and serves as a formal definition of the work to be
carried out.

In Step 4 the contractor imports the process definition. The process model
created there is a copy of the net in the client system. Next, the contractor reg-
isters with the client (Step 5). For this purpose the exported net includes the
address of the client. A direct communication is established and the interorga-
nizational process is ready for enactment.

At runtime, the contractor is responsible for executing the exported activities.
The state of the execution is reported to the client which updates his copy of the
exported net. Likewise, input and output documents of the delegated activities
have to be propagated over the network as well.

3 Dynamic Task Nets

The concept of process delegation which is presented in this paper was developed
for dynamic task nets. Dynamic task nets are a visual language for modeling de-
velopment processes [9]. The concept is implemented within the PMS AHEAD
(Adaptable Human-centered Environment for the Administration of Develop-
ment processes) which uses dynamic task nets as process modeling formalism
[12,11]. In AHEAD there are basically two user roles: the process manager who
is responsible for planning and the developers who are guided by the PMS. A
process manager uses the management tool of AHEAD which displays a view on
the complete process net. All screenshots throughout this paper show the main
window of the management tool. The developers interact with the system via
the developer front ends. The front ends provide each developer with an agenda
which contains those tasks currently assigned to him.

The language of dynamic task nets is formally specified as a graph-based
meta model in the executable specification language PROGRES [13,16]. The
specification includes the types of modeling elements and their possible relation-
ships as well as complex commands for constructing, analyzing and enacting a
task net.

Figure 2 shows a sample task net instance. Tasks are shown as boxes. They
have input parameters (empty circles) and output parameters (filled circles). A
task’s parameters are placeholders for the documents the task is working on.
Tasks are connected by control flow relationships, denoted by arrows, which de-
scribe the order of execution. Data flow relationships, denoted by dashed arrows,
can be viewed as a refinement of control flow relationships. Data flows specify

Requirements

S
pocument Implement g Source Code Q ®
Module A WoduaA ™ () TestModule A
OAnalyse .’””O
Requirements
: mpjement Source Coge. Test Module B|@
Module B Module B O
_-

Fig. 2. Sample task net

which output document of one task is consumed as an input document by an-
other task. The actual flow of documents is model by passing tokens which are
produced by output parameters and consumed by input parameters.

Another important feature of dynamic task nets is the distinction between
complex tasks and atomic tasks. Complex tasks can be refined by a net of sub-
tasks. A complex tasks can have two kinds of parameters: external parameters
are used for passing documents between tasks on the same hierarchy level while
internal parameters serve to pass documents between a task and its refining
subtasks.

To make process models executable, not only the structure but also the be-
havior of tasks has to be defined. This is achieved by assigning a state to each
task, e.g. Waiting, Active or Done. State transitions are either triggered by
certain events within the task net or are requested by the user, e.g. a developer
changes a task’s state from Waiting to Active when he starts working at this
task, later he may have successfully finished the tasks and changes the state to
Done. Whether the developer may perform these state changes depends, among
others, on how the task is embedded in the net. For example, if there is an in-
coming control flow edge specifying that the task and its predecessor have to be
executed sequentially, the task can only be started if the predecessor is in state
Done.

Because development processes cannot be fully planned in advance, dynamic
task nets allow for the intertwined execution and modification of process models.
Operations changing the net structure can be applied to a task net in execution.
The formal definition of all these operations ensures that the consistency of the
net is always maintained.

In general, the executability of a certain operation at one task depends on the
state of its predecessor, successor, parent and child tasks, and their parameters.
We refer to these model elements as the context of the task.

4 Delegation in Dynamic Task Nets

So far, we have presented the concept of delegation on a rather abstract level
and we have pointed out in which situations it can be applied. In this section we
will present the implementation of delegation in the process management system
AHEAD. For this purpose we will refer to Figure 1 and describe each step in
detail from a technical point of view with help of a small example process.

B by namile N m e
File View Options Layout Main Views Szenario Edit Dataflow Transitions Products Resources Remote Test Unmatched

AR EE

| Generic|Constraints | Dynamite | Transaction

4
3

D

SystemFolder
E ProcessChangeRequest
s stem
NewModule _ChangedSystem
_ oldsystem
- _ChanmgeRequest -

.
. - = -

N
T
NewModu Oldsysté e
= L Implementation fHeModule Test Tescamgagi:g Integration Changedsystem
ﬂ NEwDesxy%aﬁeﬁdodu\a El
T -7 TesiReport
e o e

- _NewBesign - .
=3

s ﬂTES(MUdME

TestReport

LI

Fig. 3. Definition of the interorganizational process

4.1 Definition of the Interorganizational Process

The definition of an interorganizational process (Step 1 of Figure 1) does not
differ from the definition of a local process at this stage. Figure 3 shows a screen
shot of AHEAD’s manager view. The process manager has constructed a model
of a process for processing a change request. We can see three levels of refine-
ment. The task ProcessChangeRequest at the top represents the process as
a whole. It is refined into the sequence of Redesign, Implementation, Test
and Integration. The task Test is again refined into CreateTestData and
PerformTest. At this point, the manager decides that it may be a good idea to
hire a contractor for doing the implementation and the subsequent test, while
the redesign of the system remains with his own organization.

4.2 Selecting the Tasks to be Delegated

To start a delegation, the manager has to select the tasks to be delegated and
invokes a command on these which prepares them for export (Step 2 of Figure 1).
In terms of our graph-based process model, preparation for export means that
a special node of type ExportLink is introduced into the net which connects
the delegated tasks. The command also enforces a number of conditions which
ensure the consistency of the model:

— The delegated top-level tasks have to be connected by control flows. Uncon-
nected nets should not really cause problems from a technical point of view
but we think they should be treated a two seperate delegations.

— Each element of the net may only be exported once, because a task can only
be delegated to one contractor.

— The refining subnet of each task has to be exported as well if it exists.
Defining a subnet means to specify how the contractor should perform the
delegated task. Therefore, the subnet must be part of the delegation.

BN Dy namile ETX
File ¥iew Options Layout Main Yiews Szenario Edit Dataflow Transitions Products Resources Remote Test Unmatched

—LGeneric LCuns(rain(s LDynﬂmi(e LTransﬂc(iun
4]
’ SystemFolder

ﬂ ProcessChangeRequest

NewModule _ChangedSystem (iy
Oldsystem -
~

- _ChangeRequest -

oldsystel

T
- —~
=
e
SR
estedModule El

TestReport

E\ CreateTestData

LI

Fig. 4. Selecting the tasks to be delegated

The status of the net after preparation for export is shown in Figure 4.
Normally, the node of type ExportLink in the window’s lower left is an internal
node of the model and not shown to the tool’s user. Rather, the now prepared
and later exported tasks are visualized by a different, here darker color. The
export link also serves as the data structure in which all information concerning
the delegation is stored, including the URL which identifies the client system
and the delegation. Through this URL the contractor can contact the client
after having imported the delegated net and establish a connecting for coupling
the parts of the interorganizational process.

4.3 Exporting the Delegated Net

After having selected the delegated tasks, the manager invokes the command
for the actual export (Step 3 of Figure 1). This command at first retrieves the
parameters of the exported tasks. Then, by adding an export edge to each pa-
rameter, they are marked for export as well (Figure 5). Though parameters are
modeled as nodes of the net, they are subordinated model elements which are
only meaningful together with their tasks.

Next, the command retrieves the context of the delegated net. The context
is the set of those nodes which are connected by edges to the nodes marked for
export. These nodes are added to the exported net via edges of type context
(dashed edges originating from the node ExportLink in Figure 5). By including
the context of the exported net, the enactment of the process in the contractor’s
PMS is greatly simplified as we will point out in Section 4.5.

After these preparing steps, a textual representation of the exported net is
written to a file. The task net is represented as an attributed graph according
to GXL [10], a graph-based exchange format based on XML. The textual rep-

B Oy ramite SE

File View Options Layout Main Views Szenario Edit Dataflow Transitions Products Resources Remate Test Unmatched
REE e

| Generic [Constraints | Dynamite [Transaction

i

v SystemFolder
3D FrocessChangeRequest
S cf dsystem
NewMedule Xhangedsystem { v
e ¥ -

»

OldSystem
-

- . —ChangeRequest -~
= — = -
— - - - - -~
= _ . = -

Oldsystem {4 — . Oldsyste =
ChangeRequest ign iewhodule | TestEdMudﬁg

' TestReport
BT e TestMadule
S rrrw—

L]

Fig. 5. Exporting the selected tasks

resentation also includes the export link of this delegation through which the
contractor can identify the client system.

As soon as the export is finished the PMS rejects all changes to the exported
net by the client process manager. The execution of the other parts of the net
may continue normally. The PMS now waits for being contacted by a contractor
which has imported the task and claims to be responsible for them. However, the
client process manager can call a command which revokes the export, removes
the export link and thus invalidates the file containing the process description.
After the connection between client and contractor has been established, net
changes are possible if both agree to them (see Section 4.6).

4.4 Importing the Delegated Net at the Contractor

To import the delegated net (Step 4 of Figure 1), the contractor reads the textual
representation and constructs a task net accordingly (see Figure 6). This net also
contains the tasks and parameters of the context. Just as the delegated net is in
a read-only state in the client PMS, the context of the delegation is read-only in
the contractor PMS, which is shown to the user by a different color of the tasks.
Internally, there is an import link node (not shown here) which corresponds to
the export link node in the client PMS. The contractor system now contacts
and registers with the client (Step 5 of Figure 1). In the following, each system
reports changes of the execution state of model elements on which the remote
system contains a read-only view.

Note that the context of the net in Figure 6 is really limited to those nodes
which are directly connected to the delegated net by an edge!. The predeces-
sor task Redesign and its output parameter NewDesign are part of the context

! Not all edges of the internal model are shown to the user. The edges connecting tasks
and their subtasks are e.g. visualized by the arrangement of tasks in different layers.

=l Dynamite <2» - O %
File ¥View Options Lavoul Main ¥Yiews Szenario Edit Dataflow Transition: Products Resaurces Remaote Test Unmatche
i Bes 1783 102y
FOHR®VX e e S
LGeneric LConstraints LDynﬂmite LTrﬂnsactiun |
{ N
b =
: prodiced 7
t NewMuduIyO —— =
i " ES_E odule s
Redesian ewDesign_] Implementation EWMUd”‘E‘ TES(- Integration :
i W ~ewDesian r\‘EWDES‘QﬂrQ TestedMatute)
= TestReportC)zL @
i T = NewModule B
-7 _NewDesign - =1
Il [»]

Fig. 6. Contractor PMS executes the delegated process

but its input parameters 01dDesign and ChangeRequest are not. From the con-
tractors point of view, the context is the interface to the client process. The
executability of the task Implementation in the contractor system depends on
the execution state of its predecessor task and the availability of the input doc-
ument passed through the parameter NewDesign. The contractor does not have
to know what inputs are required for Redesign.

However, the parameters of the delegated task net are not suited as the only
specification of the deliverables of a delegation. There have to be accompanying
specification documents, which are outside the scope of the process model just
as the transfer of the process description itself can naturally not be part of the
process description.

4.5 Executing the Interorganizational Process

The presence of the delegated net’s context at the contractor greatly simplifies
the realization of the integration mechanism between the systems (Step 6 of
Figure 1). From the enacting process engine’s point of view, read only tasks are
handled like odinary tasks. The difference is that no local user of the system,
developer or process manager, has the permission to change these tasks. Instead,
a component of the PMS, the link manager, acts as a user of these tasks by
invoking the same operations on them as normal users invoke on local tasks.
Unlike a human user, the link manager does not call operations on the pro-
cess model to reflect the progress of the real-world process. It merely reacts on
messages sent by a peer system concerning changes in its part of the model. Like-
wise, the link manager monitors the local process model. If it detects a change

Therefore, the parent task of a delegated net, in this case ProcessChangeRequest,
is always part of the context, though the user does not see an edge.

==l Dynamite S B
File View Options Layout Main Views Szenario Edit Dataflow Transitions Products Resources Remote Test Unmatched

O H @ X e [on Wil

2
Generic Canstraints Dynamite LTransactlon|

4 -
N =i

SystemFalder
% ProcessChangeRequest
ct for dSystem
NewMadule _ChangedSystem {
aduced = OldSystem ~ .
produced — . 3 ~
== _ - g ~
== = ~ ~_
— - - == ~ . ~
- Oldsyste .
en M OgL] TestedModu Changedsystem

ewhodule H Test E Integration
NewDesign estedModule

~ = TestReport
I A NewModule.
= -~

7 _ 4§ MewDesign ~
- - ol
Bl o NewModule !}
_MewDesign

-
T - -
TestDatad x
CreareTestDara - TestMadule

o)

B
o

-
Oldsystem
ChangeRequest

TestReport

[«

Fig. 7. Client view on the delegated process

at a tasks that is part of the context of a delegation, it sends a message to the
contractor PMS.

Figure 7 shows the task net in execution at the client. By looking at the
icon of the task ProcessChangeRequest we can tell that the task’s state is
Active, i.e. the task is executed right now. Through its internal output param-
eters 01dSystem and ChangeRequest the task has passed the respective docu-
ments to its subtask Redesign. The task Redesign has read the documents, and
it has produced a new design, denoted by the token which is attached to the
output parameter NewDesign. After this, the task was finished and the developer
to whom the task was assigned has switched its state to Done.

Now let us have a look at the contractor PMS as it is shown in Figure 6.
The contractor sees the state of the parent task ProcessChangeRequest and of
the predecessor task Redesign which are part of its context. He does not see
the tokens passed between them. The token produced by the output parameter
of Redesign is also present in the contractor PMS. It was created by the link
manager after the client system informed it about this change in the context of
the delegation. Through the connection between the link managers, the actual
design document, let us e.g. assume some UML model, was transferred from the
client’s document repository to the contractor’s repository.

The developer to whom the task Implementation is assigned can now see in
his front end that the design document is available. He can invoke the command
for consuming the token which causes the actual document to be transferred to
his local workspace where he can work on it.

4.6 Changing an Exported Net

Throughout this paper, we have emphasized that the delegation of a process net
is a contract. Neither the client nor the contractor is therefore entitled to change

the delegated net. The parts of the net to be delegated should thus be chosen
very carefully. However, due to the unpredictability of development processes
changes to delegated nets might become necessary. The PML of dynamic task
nets allows for changes at process enactment time. They are performed by the
process manager and they are not unusual.

But in case of a delegation, there are two process managers and, because client
and contractor are independent organizations, both have to agree to change the
delegated part of the net. How this agreement is reached is beyond the scope of
our management system. As soon as an agreement is reached, the manager at
the contractor can switch the state of the delegated tasks to Planning. In that
state, the client PMS permits the manager at the client to modify the delegated
net. Each change is propagated by the link manager to the contractor where
it is executed first, because the complete information, especially concerning the
refinement of delegated tasks, is only available at the contractor. Therefore,
attempts to change the net may as well fail and in this case the contractor’s
manager has to do some preparing modifications at first. Only if the change
succeeds in the contractor system, it is also performed in the client system.
Altogether, one can say that changing a delegation during enactment is difficult
not only with regard to the process model, but also in real-life. It certainly
requires frequent interaction of the involved people.

5 Related Work

Distribution and distributed enactment of processes and workflows have been
studied to some extent and implemented in several systems, e.g. Oz [3], PROSYT
[6] or FUNSOFT Nets [7]. Most of these approaches focus on connecting already
existing processes. With regard to interorganizational cooperations this means
that each organization’s part of a process is modeled separately including the
connection points to the other parts. These systems neglect the requirements of
interorganizational cooperations, which are formulated in [18, 14,1, 20], and have
their strength in supporting a distributed team of developers who are members
of the same organization. The loose coupling is typical of federated PSEEs where
the overall process which is established through the federation remains implicit.
In contrast to this, Tiako proposes in [17] to explicitly model the federation
process instead and introduces the notion of delegation.

In [8] Dowson reports on the IStar environment in which single tasks can be
delegated to contractors. For each delegation, a contract specification describes
the contractor’s obligations. It is in the contractors responsibility to decide how
these obligations are fulfilled. The approach does not allow for the delegation
of a whole subnet. Therefore, guidelines how to perform a delegated task can
only be given as an annotation to the task and do not integrate with the process
model as they do in our system.

Research by van der Aalst [20, 19] provides valuable insight into the interop-
erability of workflow management systems. He identifies several forms of interac-
tion among which we can find subcontracting. Again, subcontracting is limited to

single activities of the workflow. There are other WfMS which offer distribution
of workflows, e.g. ADEPT [2] or Mentor [15]. In these systems, distribution is
used to cope with a huge number of workflows as it might occur in a large enter-
prise. Critical issues are the migration of workflow execution between different
workflow servers and the reduction of communication overhead. Organizational
boundaries and the requirements resulting from them are not considered.

Delegation requires the transfer of process descriptions and their subsequent
enactment by the target PMS. In the area of workflow management the Workflow
Management Coalition has specified the Workflow Process Definition Language
(WPDL) [5] and an API for connecting workflow servers at runtime [4]. The
interfaces defined by the WfMC do not support delegation as introduced in this
paper but merely provide low-level support for system integration. We did not
use the WPDL for process exchange in our system because it is confined to the
workflow domain, and mapping dynamic task nets to WPDL would result in a
loss of semantics.

6 Conclusion

In this paper, we have presented a concept by which a client in an interorgani-
zational development process can delegate parts of net-based process models to
contractors. The approach takes into account the special circumstances which
arise when different organizations agree to cooperate in a development project.
The achieved integration of the process parts is tighter than it is in comparable
approaches for distributed process enactment. Nevertheless, client and contrac-
tor may autonomously execute their process parts as long as the delegated net,
which is part of the contract between them, remains unchanged.

We have implemented the concept of delegation within the process man-
agement system AHEAD for the modeling language of dynamic task nets. To
perform an operation at one model element, the context of this element has to
be known. The realized export and integration mechanism therefore includes the
context of the delegated net. This greatly simplifies the implementation of the
coupling because the underlying process engine can treat delegated or imported
tasks just like ordinary local tasks. To update the read-only copies of tasks the
process link managers have been introduced which monitor the process execution
and inform their remote counterparts if changes at relevant parts of the process
occur.

The system, as it is implemented so far, does not take into account issues like
authentification and security. Moreover, it has to be ensured that no conflicting
update messages cross each other on the network and thus the interorganiza-
tional process gets into an inconsistent state. And finally, the requirement of
autonomous execution means that PMSs which participate in a cooperation may
be temporarily down without affecting the other systems. If a system is down,
its local process state cannot change and therefore there is no need to update
the read-only view which is maintained by other systems on that process. But
a PMS must be able to distinguish between a broken network connection and

a peer system that is currently inactive, so a more elaborated communication
protocol is needed here. It is not our aim to solve all these problems. Distributed
system research has dealt with these problems and came up with a number of
well known solutions for them. In our work, we have concentrated on elaborating
the requirements which a PMS should meet to support delegation, and we have
shown how delegation mechanisms can be implemented.

References

1.

10.

11.

12.

13.

C. Basile, S. Calanna, E. Di Nitto, A. Fuggetta, and M. Gemo. Mechanisms and
policies for federated PSEEs: Basic concepts and open issues. In Carlo Montagnero,
editor, Proceedings of the 5th European Workshop on Software Process Technology,
LNCS 1149, pages 86-91, Nancy, France, October 1996. Springer.

Thomas Bauer and Peter Dadam. A distributed execution environment for
large-scale workflow management systems with subnets and server migration. In
Proceedings of the second IFCIS conference on Cooperative Information Systems
(CoopIS’97), pages 99-108, Kiawah Island, South Caroline, USA, June 1997.
Israel Ben-Shaul and Gail E. Kaiser. Federating process-centered environments:
the OZ experience. Automated Software Engineering, 5:97-132, 1998.

Workflow Management Coalition. Workflow client API specification. Technical
report, Workflow Management Coalition, http://www.aiim.org/wfmc/standards,
July 1998.

Workflow Management Coalition. Process definition interchange. Technical report,
Workflow Management Coalition, http://www.aiim.org/wfmc/standards, October
1999.

Gianpaolo Cugola and Carlo Ghezzi. Design and implementation of PROSYT: a
distributed process support system. In Proceedings of the 8th International Work-
shop on Enabling Technologies: Infrastructure for Collaborative Enterprises, Cali-
fornia, USA, June 1999. Stanford University.

Wolfgang Deiters and Volker Gruhn. Process management in practice, applying the
FUNSOFT net approach to large-scale processes. Automated Software Engineering,
5:7-25, 1998.

Mark Dowson. Integrated project support with IStar. IEEE Software, 4:6-15,
November 1987.

Peter Heimann, Gregor Joeris, Carl-Arndt Krapp, and Bernhard Westfechtel. DY-
NAMITE: Dynamic task nets for software process management. In Proceedings of
the 18th ICSE, pages 331-341, Berlin, March 1996. IEEE Computer Society Press.
Ric Holt, Andreas Winter, and Andreas Schiirr. GXL: Toward a standard exchange
format. In Proceedings of the 7th Working Conference on Reverse Engineering
(WCRE 2000), Brisbane, Australia, November 2000.

Dirk Jager. Generating tools from graph-based specifications. Information and
Software Technology, 42:129-139, 2000.

Dirk Jéger, Ansgar Schleicher, and Bernhard Westfechtel. AHEAD: A graph-
based system for modeling and managing development processes. In Manfred Nagl
and Andy Schiirr, editors, AGTIVE — Applications of Graph Transformations
with Industrial Relevance, LNCS 1779, Castle Rolduc, The Netherlands, September
1999. Springer-Verlag.

Carl-Arndt Krapp. An Adaptable Environment for the Management of Develop-
ment Processes. PhD thesis, RWTH Aachen, Aachen, Germany, 1998.

14.

15.

16.

17.

18.

19.

20.

Heiko Ludwig and Keith Whittingham. Virtual enterprise co-ordinator:
Agreement-driven gateways for cross-organisational workflow management. In
Dimitros Georgakopoulos, Wolfgang Prinz, and Alexander L. Wolf, editors, Pro-
ceedings of the International Joint Conference on Work Activities, Coordination
and Collaboration (WAC-99), pages 29-38, N.Y ., February 22-25 1999. ACM Press.
P. Muth, D. Wodtke, J. Weissenfels, A. Kotz Dittrich, and G. Weikum. From
centralized workflow specification to distributed workflow execution. JIIS — special
issue on workflow management, 10(2), March 1998.

Andy Schiirr. Introduction to the specification language PROGRES. In Manfred
Nagl, editor, Building Tightly-Integrated Software Development Environments: The
IPSEN Approach, LNCS 1170, pages 248-279, Berlin, Heidelberg, New York, 1996.
Springer Verlag.

Pierre F. Tiako. Modelling the federation of process sensitive engineering environ-
ments: Basic concepts and perspectives. In Proceedings of the 6th European Work-
shop on Software Process Technology (EWSPT’98), Weybridge, UK, September
1998.

Pierre F. Tiako and Jean-Claude Derniame. Modelling trusted process components
for distributed software development. In Proceedings of the International Process
Technology Workshop (IPTW), Grenoble, France, September 1999.

Wil M. P. van der Aalst. Interorganizational workflows — an approach based on
message sequence charts and Petri nets. Systems Analysis, Modeling and Simula-
tion, 34(3):335 — 367, 1999.

Wil M. P. van der Aalst. Process-oriented architectures for electronic commerce
and interorganizational workflow. Information Systems, 24(8):639-671, 1999.

