
Generative Technique of Version Control Systems for Software Diagrams

Takafumi Oda Motoshi Saeki
Dept. of Computer Science, Tokyo Institute of Technology

Ookayama 2-12-1-W8-83, Meguro-Ku, Tokyo 152-8552, Japan
saeki@se.cs.titech.ac.jp

Abstract

In iterative software development methodology, a ver-
sion control system is used in order to record and manage
modification histories of products such as source codes and
models described in diagrams. However, conventional ver-
sion control systems cannot manage the models in a log-
ical unit because the systems mainly handle with source
codes. In this paper, we propose a technique of version
control based in a logical unit for models described in di-
agrams. Then we illustrate the feasibility of our approach
with the implementation of version control functions on a
meta-CASE tool that is able to generate a modeling tool in
order to deal with various diagrams.

1 Introduction

In software development processes, various kinds of doc-
uments and source codes produced in the processes is fre-
quently changed by various reasons, e.g. customer’s re-
quirements changes, even during its development. Devel-
opers should have various versions of a product and man-
age them in their project. In this situation, the techniques
for version control are significant to support their tasks by
using computerized tools. In addition, in modern software
development, we frequently adopt iterative and incremen-
tal development styles such as Unified Process [2] and XP
[3], and version control is mandatory for incremental and
iterative development styles. We have excellent version
control techniques and computerized supporting tools for
source codes such as RCS [4], CVS [5] and Subversion [6].
These tools store the current version of a product and the
differences between the adjacent versions in a repository,
so that it can recover all of the older versions by applying
the stored differences to the current one (backward differ-
ence). However, they are for text documents and adopt line
based management, i.e. the granularity of version control is
a “line” and the difference is generated line by line. Since
we use diagram documents such as class diagrams in mod-
eling stages of development projects, we should manage the
changes on the diagrams, not in the granularity of a line, but

of a logical unit component, e.g. “Class”, “Association”,
“Attribute” etc. in the case of Class Diagram. The targets
of version control should be logical components and they
depend on development methods. For example, the targets
are “Class”, “Attribute”, “Association”, etc. in the case of
Class Diagram, while they are “State”, “Transition” etc. in
State Diagram. That is to say, we should manage version
records in the level of manipulating components of a class
diagram, e.g. creation of a class and deletion of an attribute
in a class, etc.

To model a complicated software system, we represent
its model with various diagrams from separated multiple
viewpoints, for example a class diagram for structural views
and state diagrams for behavioral view. It means that our
version control system should handle with various logical
components that are different according to the used dia-
grams. We should have an individual version control sys-
tem for each diagram and the development of these various
version control systems consumes much wasteful labor.

Some of CASE tools for diagrams such as Argo UML
[7] can transform a diagram into a XML document by
using XMI technology [9], and after the transformation,
we can apply to the transformed XML document an ex-
isting version control tool such as RCS and CVS. In fact,
some of them such as Eclipse UML [11], Jude[10] and
Poseidon[12] have interfaces to CVS. However, this solu-
tion cannot achieve an integrated and seamless support for
developing a diagram and for its version control, and the de-
velopers should use two separated tools; a CASE tool and
a version control one. And as far as RCS or CVS is used,
the management of versions is based on the granularity of a
line, not a logical component of a diagram. Some tools such
as Rational Rose [13] and Konesa [14] include the function
of “differencer” [15, 16], which shows the differences be-
tween the older version of the diagram and the current one,
e.g. by highlighting different graphical components or by
depicting in tree form the changed classes appearing in a
class diagram. “Differencer” holds all versions of a product
thoroughly, not the differences between them. Thus it has a
shortcoming that large amount of spaces in the repository is
wasted. Furthermore, we have to construct each differencer
for each type of diagram, e.g. Differencer for Class Dia-

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

gram, Differencer for Sequence Diagram, etc., and much
effort in building development environment is necessary. In
[18], a technique of version control for diagrams was dis-
cussed. However, it regarded a diagram as a graph consist-
ing of nodes and edges and it did not consider logical prop-
erties specific to the diagrams. The techniques to calculate
differences on XML [20] and on complex objects [17] were
studied. However, they did not discuss the flexible variation
of the logical components that should be targets of version
control.

In this paper, the version control technique based on log-
ical components of diagrams and a kind of generator of ver-
sion control system is proposed to solve the above prob-
lems. The essential point of our work is generating a CASE
tool together with the functions of version control from a
meta model representing a diagram. That is to say, we have
developed a kind of meta-CASE tool generating the tools
having version control mechanisms. The rest of the paper
is organized as follows. Section 2 presents the outline of
the proposed system and introduces our meta-CASE tool, a
kind of CAME (Computer-Aide Method Engineering tool)
[1]. A meta modeling technique to represent diagrams is
also shown in the section. Section 3 describes the opera-
tions of modifying a diagram in order to represent differ-
ences between versions. In sections 4 and 5, we present the
functions of version control and the illustration of the gen-
erated diagram editors having version control mechanism,
respectively. Section 6 is the concluding remark and dis-
cusses the future work.

2 Generating Version Control Systems

2.1 The Overview of Our Approach

In our version control system, we adopt a technique to
store differences between two versions in a repository like
RCS and CVS, etc. so that we can recover the older versions
that were previously produced. In this approach, the state
of the artifact at a certain time is considered as a baseline,
and the version control system stores the difference between
this baseline and each version to the repository. It has an
advantage point where products are efficiently manageable.

When adopting an approach of storing differences, the
techniques to define the differences between versions and
to acquire them are necessary. To extract a difference effi-
ciently, we focus on the developer’s activities of editing a
diagram by using a diagram editor. In other words, we gen-
erate the element of the difference from an execution of an
editor operation such as “create” and “delete” a component.
Suppose that a developer creates a new class in a class dia-
gram by using Class Diagram editor. The execution of the
editor operation “create a class” results in its addition to the
difference data. The meta model of the diagram provides
the information on what editor operations we should focus
on, and we can specify operations such as “create”, “delete”

and “update” a logical component appearing in the meta
model. The sequence of the editing operations that a devel-
oper is performing is acquired in real-time during his editing
activity using the editor. The acquired operation sequence
can be considered as the difference between versions, and is
stored in the repository. Our meta-CASE tool, which gen-
erates a diagram editor from the meta model description,
should automatically embed the functions of acquiring per-
formed editing operations in real-time and of transforming
them to difference data, when it generates the editor.

Figure 1 depicts the overview of our system. As shown
in the figure, we have two types of engineers; one is called
method engineer who is the expert of specifying meta mod-
els and another is a software engineer who constructs mod-
els of the software systems to be developed. The method en-
gineer uses a method editor to manipulate the meta model.
The method editor is a kind of diagram editor because Class
Diagram (precisely, MOF) is adopted to describe a meta
model, and it allows the method engineer to easily edit meta
models.

The details of the meta model will be explained in the
next sub section. Our meta-CASE tool automatically gen-
erates from the meta model, 1) an editor (a modeling tool)
for supporting inputting and editing products, such as the
editor of Class Diagram, and 2) the schema of a reposi-
tory. That is to say, the meta model serves as the schema
definition for the repository to which the developed prod-
ucts are stored. Software engineers may develop a model
of a software system by using the tools generated from the
meta model. The functions of version control, whose ac-
cess interfaces are similar to CVS, are embedded into the
generated diagram editors.

A software engineer, i.e., a user of the generated editor
develops the first version of a model as a baseline, and im-
ports it to the repository. He can check out any versions of
the model that are stored in the repository, and edit them by
using the editor. The editor gets the operation sequences on
the model in real-time by monitoring the editor commands
that he used. And he can check in the current version of the
product by storing operation sequences as the difference to
the repository whenever he wants to do.

2.2 Meta Models and Meta-CASE

The example of the meta model of the simplified version
of use case diagrams is shown in a left side window of Fig-
ure 2. As shown in the figure, the meta model “Use Case
Diagram” has the concepts “Actor”, “Association”, “Use-
Case” and “System” and all of them are defined as classes
on a meta model. The concept “ModelElement” is their su-
per class and has the attribute “name”, and the instances
of UseCase, Actor, Association and System can have their
names. These concepts (called method concepts) have as-
sociations (called method association) representing logical
relationships among them. For instance, the concept “Use-
Case” is associated with “Association”, so use cases can be

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Meta model

Method

Engineer

Generate

Meta-CASE

Create

Modeling Tool (Diagram Editor)

Software

Engineer

Use

Modify

ClassA

ClassB

ClassA

ClassB ClassC

Working

Space

Model Repository

Create

Check out

ClassA

ClassB

Baseline

1. Create ClassC

2. Create Association

Check in

Difference

(Operations)

Import

Get In Real Time

Meta modelMeta model

Method

Engineer

Method

Engineer

Generate

Meta-CASEMeta-CASE

Create

Modeling Tool (Diagram Editor)

Software

Engineer

Software

Engineer

Use

Modify

ClassA

ClassB

ClassAClassAClassA

ClassBClassBClassB

ClassA

ClassB ClassC

ClassA

ClassB

ClassAClassAClassA

ClassBClassBClassB ClassCClassCClassCClassC

Working

Space

Model RepositoryModel Repository

CreateCreate

Check outCheck out

ClassA

ClassB

Baseline

ClassA

ClassB

ClassA

ClassB

ClassAClassAClassA

ClassBClassBClassB

Baseline

1. Create ClassC

2. Create Association

Check in

Difference

(Operations)

Import

Get In Real Time

Figure 1. Overview of Our System

connected with each other through the instances of “Asso-
ciation”. This is for representing the relationships such as
“uses” and “extends” between use cases. We simply call
both method concepts and method association method el-
ements. The method elements can be the logical unit of
version control.

In addition, we should consider constraints on the prod-
ucts. For example, we cannot have different use cases hav-
ing the same name in a use case diagram. We can specify
this constraint to keep consistency of the products, i.e. class
diagrams on its meta model, by using OCL (Object Con-
straint Language). On account of space, we do not explain
more details of our meta modeling technique, and the read-
ers can find them in [1].

Our meta-CASE is only for generating diagram editors
which deal with a product conceptually as a graph consist-
ing of nodes and edges. Thus we should provide the in-
formation on which the method concepts in a meta model
can be represented with nodes or edges of the graph. The
method engineer provides two types of information: one
is the correspondence of method concepts to the elements
of graphs, i.e. nodes, edges, texts within the nodes and
texts on the edges, and another is notational information
of the nodes and edges. Suppose that he tries to generate
a use case diagram editor from Use Case Diagram. The
concept UseCase, Actor and System in the Use Case Dia-
gram conceptually corresponds to nodes in a graph, while
Association does to edges. He provides this information as
stereotypes on the method concepts. Figure 2 included the

information for the meta-CASE as well as the meta model
of use case diagrams. The readers can find the stereotypes
“<<Entity>>” and “<<Relationship>>” attached to the
classes in the meta model. The former stereotype stands
for the correspondence to a node and the latter to an edge.
For example, an occurrence of a use case in a use case dia-
gram corresponds to a node from the viewpoint of the graph,
while an association between use cases to an edge. Note
that a generated editor automatically includes commands
for creating and deleting the method concepts correspond-
ing to the nodes or the edges.

In addition, method engineer should specify which fig-
ures, say a rectangle, a circle, an oval and a dashed ar-
row, are used for expressing method elements on the edi-
tor screen. We call this information notation model, while
the model consisting of method concepts and associations
for expressing its logical structure is called logical model.
Basic graphical figures such as figures used in UML dia-
grams are built-in and their drawing programs are embed-
ded as Java classes into our meta-CASE. A method engineer
selects the figures out of these pre-defined built-in figures
for the <<Entity>> components and <<Relationship>>
ones, by clicking a menu item, as shown in the left win-
dow Meta-CASE of Figure 2. In the example of this figure,
the method engineer specifies a graphical figure for Actor
as “ActorShape” which is pre-defined and built-in shape in
the system. The meta-CASE produces a diagram editor by
embedding the above information and Java classes into a
modeling tool framework, as shown in Figure 3.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Method Editor

Meta-CASE

Figure 2. An Example of A Meta Model and A Meta-CASE

Attributed
Graph

EditingDrawing Managing

Meta Model

Framework

Attributed
Graph

EditingDrawing Managing

Meta Model

Framework

Figure 3. Generating Diagram Editors

Figure 4 illustrates the instance of a use case diagram
and shows how to store it following its meta model. As
mentioned above we have a logical model and a notation
model. The logical model has method concepts “Use Case”
and “Actor”, both of which have the information on their
names, e.g. “CreateElement” and “Developer”. They are
connected to the elements of the notation model having the
information on their locations and the graphical shapes on
the screen, as depicted with dotted arrows in the figure.
All model elements included in logical models and notation
ones that can be the targets of version control hold unique
identifiers called UUID [19], in order to keep their identities
in the repository.

UseCaseDiagram

DeveloperDeveloper

CreateElement

Draw

Diagram

Notation Model

Logical Model

:Association

name=Developer

:Actor

name=CreateElement

:UseCase

:Association

name=Developer

:Actor

name=Developer

:Actor

name=CreateElement

:UseCase

name=CreateElement

:UseCase

:UseCaseShape

top = 30

left = 100

bottom = 100

right = 150

:AssociationShape
top = 10

left = 10

bottom = 110

right = 60

:ActorShape :UseCaseShape

top = 30

left = 100

bottom = 100

right = 150

:UseCaseShape

top = 30

left = 100

bottom = 100

right = 150

:AssociationShape
top = 10

left = 10

bottom = 110

right = 60

:ActorShape

top = 10

left = 10

bottom = 110

right = 60

:ActorShape
Draw

Draw

Figure 4. An Instance of Use Case Diagram

3 Operations on Model Elements

In this section, we discuss operations on the models to
represent the differences between versions. The operations
can be classified into the following three categories:

• Operations on a logical model
They are for inputting and editing method elements on
the logical part of the meta model, e.g. creating and
deleting method concepts such as Class, State and As-
sociation etc.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

• Operations on layout data of graphical elements
They are for changing layout of graphical elements on
the display screen, such as moving and resizing a rect-
angle denoting the class. These operations do not have
any semantic influence on the model.

• Operations on a notation model
They are for manipulating the elements of the notation
model such as creating a node and deleting an edge etc.

These operations include the UUIDs as parameters so that
their target instances can be uniquely identified in the repos-
itory. In addition, the instances of these operations are la-
beled with unique UUIDs so that the version control system
can identify them.

Tables 1 and 2 show the operations on the layout data of
the graphical elements and on the notation model respec-
tively. The control point in table 1 is a point where a user
can change the size of a graphical element by his dragging
with a mouse.

Note that the delete operations such as DeleteEdgePick-
Point and DeleteNode have the information on the deleted
elements as their parameters. For example, DeleteNode op-
eration includes location data x and y which denote X-Y
coordinates of the element on the display screen. This in-
formation is necessary to implement Redo/Undo functions
in the generated modeling tools. If a user deletes an ele-
ment and the corresponding delete operation does not have
the X-Y coordinates of the deleted element, the tool cannot
recover and put the deleted element on the screen when he
invokes Undo. Redo/Undo functions are implemented by
using these operations, shown in the tables, in the modeling
tools.

The operations on layout data and on a notation model
are common to any diagrams, while the operations on a log-
ical model are dependent on diagrams because we should
have the operations specific to method elements, e.g. cre-
ating a Class for Class Diagram and creating a State for
State Diagram. We extract these operations from a meta
model focusing on its method concepts. Furthermore, we
have several additional operations to manipulate the rela-
tionships between a logical model and a notation one, and
to edit the texts of attributes of the method concepts. For ex-
ample, the following two operations are to create and delete
a connection between a logical model eUUID and a notation
model whose type is sType.

ConnectShapeModel(UUID, eUUID, sType)
DisconnectShapeModel(UUID, eUUID, sType)

The following three operations are for updating, creating
and deleting the texts of the attributes attached to an element
eUUID of the model.

UpdateAttribute(UUID, eUUID, sUUID, attrName,
preValue, newValue)

CreateElement(UUID, eUUID, eType, attr1, attr2, ...)
DeleteElement(UUID, eUUID, eType, attr1, attr2, ...)

Table 1. Operations on Layout Data
Operations Definitions

Moving a
control point

MovePickPoint(UUID, sUUID,
pID, dx, dy)
Moving a control point labeled with
pID in a notation model sUUID
(dx, dy).

Moving a
graphical
element

MoveShape(UUID, sUUID, dx, dy)
Moving a notation model labeled
with sUUID (dx, dy).

Inserting a
vertex in a
polygonal
line

CreateEdgePickPoint(UUID,
eUUID, pID, x, y)
Creating a control point pID at
(x, y) in the edge eUUID.

Deleting a
vertex in a
polygonal
line

DeleteEdgePickPoint(UUID,
eUUID, pID, x, y)
Deleting a control point pID in the
edge eUUID.

Any editing activity on a diagram through a modeling
tool can be defined as the combination of these operations.
In this sense, these operations listed above are primitive and
atomic. Suppose that a software engineer creates a new
class and add it to a class diagram. This activity comprises
1) creating a class in a logical model of Class Diagram, 2)
creating a node (a rectangle box) on a display screen, and
3) connecting the class in the logical model to the node in
the notation model. Thus we can have the sequence of the
operations as follows.

1. CreateClass(UUID1, ClassUUID, anonymous)
2. CreateNode(UUID2, RectangleUUID,

ClassShape, 30, 20)
3. ConnectShapeModel(UUID3,

RectangleUUID, ClassUUID)

In the above description, UUID1, UUID2 and UUID3 stand
for the unique identifiers denoting the three operations. The
first operation creates a class in the logical model level and
labels it with ClassUUID, while a rectangle labeled with
RectangleUUID is created and put at the location (30,20) of
the screen in the second operation. ClassShape is the type
of graphical element, i.e., a rectangle in this case, which
is pre-defined in the meta-CASE. The last operation is for
connecting the two components that have been created by
the previous operations.

For each execution of an editing command of a model-
ing tool, a combination of the corresponding operations is
automatically generated as an element of the difference. In
addition, to detect the conflicts on merging branched ver-

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Table 2. Operations on a Notation Model
Operations Definitions

Creating a
node

CreateNode(UUID, nUUID, Type,
x, y)
Creating a node of type “Type” la-
beled with nUUID, at the position
(x, y) on the screen.

deleting a
node

DeleteNode(UUID, nUUID, Type,
x, y)
Deleting a node labeled with nU-
UID.

Creating an
edge

CreateEdge(UUID, eUUID, Type,
sUUID, tUUID)
Creating an edge of type “Type”
labeled with eUUID. The created
edge is connected to the node sU-
UID as its source and to tUUID as a
destination.

Deleting an
edge

DeleteEdge(UUID, eUUID, type,
sUUID, tUUID)
Deleting an edge labeled with eU-
UID.

sions, the operations have pre conditions that should be true
when they are applied, as mentioned later in section 4.4.

4 Version Control Functions

4.1 Overview

By using our generated version control system, a soft-
ware engineer has working spaces at his local site, and per-
forms import, check-out and check-in operations between
his working space and a repository. He uses an import op-
eration to get a working space and to import a product from
the repository as a baseline. When the engineer checks out
from the repository the version n of a product, a working
space for modifying it is allocated at his local site and it is
loaded into the working space. The engineer uses the mod-
eling tool to modify the version n, and after completing the
modification, he stores it as version n+1 into the repository
(check-in).

A method engineer starts a method editor and develops
a meta model of a diagram that software engineers will use.
And then he generates a modeling tool for the diagrams
specified with the meta model. The generated tool has menu
commands for version control. The basic commands for
version control can be listed up in the following;
import : for generating an empty working space and then
loading a product as a baseline.
check-out : for loading an product from a repository to the
current working space.
check-in : for saving the product in the current working

Developer

UseCaseDiagram

CreateElement
Modify

:AssociationShape

id=5

:AssociationShape

id=5

id=6

name=anonymous

:Association

id=6

name=anonymous

:Association

:UseCaseShape

id=3
top=20
left=30

bottom=25
right=50

:UseCaseShape

id=3
top=20
left=30

bottom=25
right=50

id=4

name=CreateElement

:UseCase

id=4

name=CreateElement

:UseCase

:ActorShape

id=1
top=10
left=10

bottom=30
right=25

:ActorShape

id=1
top=10
left=10

bottom=30
right=25

id=2
name=Developer

:Actor

id=2
name=Developer

:Actor

Developer

UseCaseDiagram

:ActorShape

id=1
top=10
left=10

bottom=30
right=25

:ActorShape

id=1
top=10
left=10

bottom=30
right=25

id=2
name=Developer

:Actor

id=2
name=Developer

:Actor

Modify

Notation Model

Logical Model

Figure 5. Acquiring Differences

space as a new version back to the repository.
How to use these commands is illustrated in the subsequent
sections.

4.2 Acquiring Differences and Checking In

Figure 5 illustrates how to acquire the differences be-
tween two use case diagrams. The figure includes three lay-
ers; the upper one depicts instances of use case diagrams,
the middle and the bottom ones show their notation model
and logical one respectively. Note that for easiness to read
the figure, we simplify the identifier numbers of the ele-
ments (id) instead of UUID.

A software engineer, a user of the modeling tool for use
case diagrams, develops a use case diagram as shown in
the left side of the upper layer of the figure and sets it as a
baseline. The use case diagram is stored as version 1 into
the repository by this activity. Subsequently, he performs
the following modifications and gets a new use case diagram
as shown in the right side of the upper layer of Figure 5.

1. Creating a new use case. The default value is assigned
to the attribute value “name”, i.e. the name of the use
case, by the editor.

2. Changing the name of the new use case to CreateEle-
ment.

3. Creating an association between the actor Developer
and the new use case CreateElement.

The above sequence of the modifications causes the
change of the attributed graph internally representing the
use case diagram and the version control system gets the
operation sequences shown in Figure 6. For example, the
modification activity of creating a new use case in Com-
pound(op1) of the figure comprises three operations: Creat-
eNode in a notation model level, CreateUseCase in a logical

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Compound(op1) {

CreateNode(op2, 3, UseCaseShape, 30, 20)

CreateUseCase(op3, 4, UseCase, anonymous)

ConnectShapeModel(op4, 3, 4)

}

UpdateAttribute(op5, 4, 3, name, CreateElement, anonymous)

Compound(op6) {

CreateEdge(op7, 5, AssociationShape, 1, 3)

CreateAssociation(op8, 6, Association, anonymous)

ConnectShapeModel(op9, 5, 6)

AddAssocToUseCase(op10, 4, Association, 6)

SetUsecaseToAssociation(op11, 6, UseCase, 4)

AddAssocToActor(op12, 2, Association, 6)

SetUsecaseToAssociation(op13, 6, UseCase, 2)

}

Figure 6. An Acquired Operation Sequence

model level and ConnectsShapeModel for relating the no-
tation model to the logical model. The word “anonymous”
appearing as the fourth parameters of CreateUseCase stands
for a default name of the created use case. The second oper-
ation UpdateAttribute is for the activity of replacing it with
CreateElement. Compound(id6) is for establishing an asso-
ciation between the actor and the use case.

The user can check in the acquired operation sequence
as a difference to the repository whenever he wants to do.
The version number is automatically incremented and it is
labeled with version 2 if he does not explicitly specify any
version number. If he specifies the number, it is stored as
one of the branching versions of version 1.

4.3 Checking Out

The engineer can check out a specific version to his
working space, by applying the stored differences to the
version 1 that is a baseline. Figure 7 shows the example
of checking out the product of version 2.2.2, and its left part
depicts a version tree.

To check out the version 2.2.2, first of all the engineer
should get the version 1, that is a root of the version tree, as
a baseline by using “import” command. The path in the tree
from the version 1 to any version being checked out can be
uniquely identified because this version tree is a real tree.
To get the version 2.2.2, the version control system traces
the path to it in the tree and applies to the root version all
differences that the path holds one by one (i.e., the differ-
ences from the root version 1 to the version 2.2.2). By these
successive applications, the engineer can get and manipu-
late the version 2.2.2 in his current working space.

4.4 Merging Branching Versions

Similar to CVS, our version control system and repos-
itory can have branched versions. To deal with branched
versions, the function of merging different versions that are
branched into a new version is necessary. This can be done
by applying to the baseline the differences that the branched

Version 2.2.1

Version 3

ClassAClassA

ClassBClassB

ClassA

ClassB

ClassA

ClassB ClassC

ClassAClassA

ClassBClassB ClassCClassC

VersionTree

Version 1

Version 2

Version 2.1.1

Version 2.2.2

Version 2.2.3

Get

ClassC

Apply

Apply

ClassD

Apply

Modeling Tool

Working

Space

ClassD

ClassB ClassC

Checkout

Version 1

Version 2

Version 2.2.2

Version 1 : Class A + Class B + an association between A and B

Modifications:

from Version 1 to Version 2 : Creating a class C

from Version 2 to Version 2.2.1 : Creating an association between A and C

from Version 2.2.1 to Version 2.2.2 : Changing the class name of A to D

Scenario

Version 1 : Class A + Class B + an association between A and B

Modifications:

from Version 1 to Version 2 : Creating a class C

from Version 2 to Version 2.2.1 : Creating an association between A and C

from Version 2.2.1 to Version 2.2.2 : Changing the class name of A to D

Scenario

Version 2.2.2

Version 1

as a baseline

Figure 7. Checking Out

paths hold and it is the same technique as a check-out func-
tion. On merging, an engineer has two versions: one is for
playing a role of a baseline and another is the merged ver-
sion. We call the former base version and the latter merge
version. The merge version is merged into the base version.
The procedure how to merge the version A to the version B
is outlined as follows. Our version control system goes up
to the root of the version tree and looks for a version that is
a common ancestor to the versions A and B. After checking
out the version B as a base version, it applies to the version
B the differences that are held on the path from the common
ancestor to the version A (merge version). The only point
different from the check-out function is to handle with the
occurrences of conflicts among the branched versions, i.e.
the base version and the merge one.

There may occur conflicts when applying the differences
to a base version. See a scenario of the modification shown
in Figure 8, and suppose that the version 1 had classes A
and B and that the class A was deleted at the version 2 from
it. In the version 1.1.1, which is one of the branched ver-
sions from version 1, a new class C is created and associ-
ated with the class A. The engineer selects the version 2 and
the version 1.1.1 as a base version and a merge one respec-
tively, i.e. he will merge the version 1.1.1 to the version
2. If the system tries to apply to the version 2 the differ-
ence from version 1 to 1.1.1, it fails because the class A
does not appear and it is impossible to establish the associ-
ation between A and C in the version 2. However, since
it is possible to create a class C, its operation is applied
and as a result the engineer gets the version 2 having the
class C. In this case, the system records the operations that
are failed to be applied, e.g. CreateEdge between A and C,

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Version 1 : Class A + Class B + Association between A and B

Modifications:
from version 1 to version 2 : Deleting a class A and an association between A and B
from version 1 to version 1.1.1 : Creating a class C and an association between A and C

Scenario

ClassBClassB

ClassAClassA

ClassBClassB

ClassA

ClassAClassA

ClassBClassB ClassCClassC

ClassA

Version 1

Version 1.1.1

Version 2

Figure 8. A Modification Scenario Example

Version 1.1.1

Version 2

ClassAClassA

ClassBClassB ClassCClassC

ClassBClassB

Version Tree

Version 1

ClassA

Version Operations

(Ver 2 + Ver 1.1.1

except the conflict operations)

+

User Edit Operations

ClassBClassB

Working Space

User

� Edit

Create Edge to A

Close

ConflictView

� Show Conflict

ClassCClassC

� Apply

Version 3

� Check in

� Get Base Version

Common

Ancestor

Version ClassAClassA

ClassBClassB

Figure 9. Conflicts in Merging

and continuously performs the operations that are applica-
ble. In this example, only CreateClass C is performed. To
detect conflicts, we attach to each operation a pre condition
that should hold before its application. For example, the
condition “the elements specified with sUUID and tUUID
shall exist” is attached as a pre condition to the operation
CreateEdge(UUID, eUUID, type, sUUID, tUUID), which
connects sUUID to tUUID. If the condition is evaluated to
be false, its application is skipped and its failure is record
as illustrated above. The recoded failures of applying oper-
ations are shown to the engineer if any, and he can edit by
manual the diagram referring to the failure record, as shown
in the steps 3 and 4 in Figure 9. After completing the merge
activity, he checks in the diagram as the next version to or
one of the branched versions from base version 2.

Note that the direction of merging may have the influ-
ence in the result. For example, although merging the ver-
sion A to B has no conflicts, merging B to A may have a
conflict. Return back to the above example and consider

Version 1.1.1

Version 2

ClassAClassA

ClassBClassB ClassCClassC

ClassBClassB

Version Tree

Version 1

ClassA

Working Space

ClassCClassC

� Apply

Version 3

� Check in

� Get Base Version

Common

Ancestor

Version

ClassAClassA

ClassBClassB

Figure 10. No Conflicts in Merging

that the engineer will merge the version 2 to the version
1.1.1, whose merge direction is reversed with Figure 9. As
shown in Figure 10, the version 1.1.1 having the classes A
and C is checked out as a base version, and during a merg-
ing process of the version 2, the class A is to be deleted
by applying the differences from the version 1 to 2. This
deletion is successful because the class A exists in the base
version. The associations between A and B and between A
and C are automatically deleted together with the deletion
of the class A.

5 Implementing a Version Control in Meta-
CASE

In order to assess the feasibility of our proposed ap-
proach, the version control functions have been imple-
mented on the meta-CASE called CAME [1]. The tool com-
prises the following modules.

• Modeling Tool Framework
It provides general functions of modeling tools. By
filling with suitable software modules the hot spots of
the framework, it is made a modeling tool specified by
a meta model.

• Method Editor
It is a graphic editor to input and edit meta models.

• MetaCASE
By providing a meta model that is developed with the
method editor, it automatically generates a modeling
tool for inputting and editing diagrams following the
meta model.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

The modeling tool framework and meta-CASE are extended
so that they can generate modeling tools having version con-
trol mechanism. As a result, we can have modeling tools
with unified user interface of version control functions for
various diagrams such as ER diagrams and UML ones.

Our repository has three types of file; 1) a file for a ver-
sion tree, 2) files for baseline versions and 3) files for dif-
ferences. We have a meta model for version trees and a
meta model for the operations mentioned in section 3 as
their abstract syntax, in addition to the meta model of a soft-
ware diagrams such as Figure 2, corresponding to the above
three types of file. In order to store data into these files, we
use XML representation which is produced by Java library
java.beans.XMLEncoder/XMLDecorder. This library can
transform java objects into XML documents directly fol-
lowing these meta models.

By using the function of our meta-CASE tool, we actu-
ally generated two diagram editors: ER diagram editor and
Use Case diagram one. By using these tools, our software
engineers could construct these diagrams of a web appli-
cation of a simple seat reservation system and handle with
their versions, without any troubles.

The one observed weak point is time efficiency of a
check out operation. Since we adopted the technique to hold
the forward differences where the newest version is gener-
ated by applying all differences from the baseline version, it
took longer time to check out the newest one. It took a cou-
ple of seconds to check out the version 2 from the version
1, where their difference included 160 operations.

The screen of a use case diagram editor are shown in Fig-
ure 11. This screen is the product of the version 4 whose dif-
ference from the version 3 is adding a new use case “Login”.
The window of “Difference of Selected Version”, which is
located in the right side of Version Tree Viewer, shows the
sequence of the operations of this addition. It is possible for
users to see differences not only by expressing an operation
sequence in textual format, but also in intuitive and graphi-
cal display style, e.g. the tool can display the differences by
highlighting or changing colors of the modified elements on
the screen.

6 Conclusion and Future Work

In this paper, the version control technique based on log-
ical components was proposed for models described by di-
agrams such as ER diagrams and UML ones. We also im-
plemented a kind of Meta-CASE to generate modeling tools
having unified version control functions based our proposed
technique.

We can list up future works as follows:

• Improving time efficiency
As discussed in section 5, time performance of a check
out operation should be improved in order to make our
tool more practical. In our tool, users can make any
version as a baseline version and store it completely

to the repository, by using import command. How-
ever, for the users, it may be a troublesome to consider
which are major versions to be stored completely and
re-define them whenever a new version is generated.
Like CVS, we take the newest version as a baseline
and hold the differences from it to the older versions,
i.e., we will adopt the approach based on backward dif-
ference. In backward difference approach, all of the
leaves in a version tree should be baseline versions and
merge processing becomes more complicated. In our
prototype implementation, we had taken a simpler ap-
proach, i.e. forward difference one.

• Compliant to XMI
In this paper, although our tool can import and ex-
port the models in XMI-compliant format, we defined
the representation of differences by using operations
that have original syntactical structures. To standardize
our tool, we should adopt more general representation
technique such as XMI. We can use XMI.update oper-
ations to represent differences. They are used for in-
forming the differences of XMI-compliant documents
when the documents are exchanged. We have three op-
erations; XMI.add for adding an element to the older
document, XMI.delete for deleting an element, and
XMI.replace for replacing an element with a new el-
ement. Adopting XMI.update operations is one of fu-
ture works.

• Applying to other CASE tools
We adopted the records of actually used editing opera-
tions to calculate the differences between two consec-
utive diagrams, so called operation based versioning.
This approach leads to less applicability to the other
existing CASE tools, and the tools having our version
control technique are limited to what our meta-CASE
generates. The implementation of meta differencer,
which generates from a meta model a program to cal-
culate the differences between two diagrams, is one of
the interesting topic.

• Support for multi-users
In this paper, we explained our approach in single-user
and local-site situation. However, the support for dis-
tributed, concurrent and collaborative tasks by multi-
users is significant. Our tool has the function to sup-
port version branching, merging and conflict process-
ing in addition to highlighting the difference on the
editor screen. For example, a user can be aware of
the difference of his version to another version that the
other user is producing by the highlighting function.
Our tool has the function to support version branching,
merging and conflict processing. Since multi-users can
use our tool under uncontrolled situations, its function
seems to be the first step toward multi-user support.
To elaborate the supports for multi-users, we have to
investigate real collaborative version control tasks on

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

Version Tree Viewer

Difference of Selected Version

UseCaseDiagram Modeling Tool

Figure 11. Display Screen of the System

software diagrams, which may be different from pro-
grams.

• Optimizing an operation sequence in a difference
An extracted operation sequence can include useless
operations for recovering and checking out the newer
version. Suppose that a user created a class in a class
diagram and then immediately deleted it. In our cur-
rent approach, these two activities are held in the dif-
ference data. However they should be excluded when
registering the difference to the repository, because
they had no effects on the diagram before and after
performing them.

References

[1] M. Saeki. Toward Automated Method Engineering:
Supporting Method Assembly in CAME. In Engi-
neering Methods to Support Information Systems Evo-
lution - EMSISEf03, OOIS’03 http://cui.unige.ch/db-
research/EMSISE03/
2003.

[2] I. Jacobson, G. Booch, and J. Rumbaugh. The Uni-
fied Software Development Process. Addison Wesley,
1999.

[3] K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 1999.

[4] Revision Control System,
http://www.cs.purdue.edu/homes/trinkle/RCS/.

[5] Concurrent Versions System,
http://www.cvshome.org/.

[6] Subversion, http://subversion.tigiris.org/.

[7] ArgoUML, http://argouml.tigris.org/.

[8] UML Specification, http://www.omg.org/.

[9] XML Metadata Interchange, http://www.omg.org/.

[10] Jude, http://objectclub.esm.co.jp/Jude/.

[11] EclipseUML, http://www.omondo.com/.

[12] Poseidon, http://www.gentleware.com/.

[13] Rational Rose,
http://www-6.ibm.com/jp/software/rational/.

[14] Konesa, http://www.canyonblue.com/.

[15] D. Ohst, M. Welle, and U. Kelter, “Difference Tools
for Analysis and Design Documents,” Proceedings of
the IEEE International Conference on Software Main-
tenance, pp. 13-22, 2003.

[16] D. Ohst, M. Welle, and U. Kelter, “Differences be-
tween versions of UML diagrams,” ESEC/FSE2003,
pp. 227-236, 2003.

[17] C. Oussalah and C.Urtado, “Complex Object Version-
ing Source,” Lecture Notes In Computer Science, Vol.
1250 (CAiSE97), pp. 259 - 272, 1997.

[18] J. Rho, and C. Wu, “An Efficient Version Model of
Software Diagrams,” Proceedings of the Fifth Asia Pa-
cific Software Engineering Conference, pp. 236-243,
1998.

[19] Universally Unique Identifier,
http://java.sun.com/j2se/1.5.0/ja/docs/ja/api/java/util/
UUID.html.

[20] Y. Wang, D. DeWitt, and J. Cai, “X-Diff: An Effective
Change Detection Algorithm for XML Documents,”
Proceedings of the 19th International Conference on
Data Engineering, pp. 519-530, 2003.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

