
A Framework for Subsystem-based Configuration Management

Peter Lindsay* Anthony MacDonald*t Mark Stapled Paul Strooper* t

Abstract

Existing software Configuration Management (CM)
tools are limited in the support they provide for configu-
ration and change management of hierarchically structured
sofhyare systems. This paper describes a framework for CM
of subsystems - logically coherent collections of software
development artefacts, including code, documentation and
test sets. The goal is to provide visibility of changes at inter-
mediate levels between whole-system and source-code lev-
els, thereby reducing the complexity of the build, V&V and
change management processes. The framework supports
characterisation of subsystems and changes to subsystems,
and provides hooks into change tracking processes.

1. Introduction

Software Configuration Management (CM) [3,7,22] is
a key discipline for high-integrity system development [20].
CM is concerned with controlling and recording the evolu-
tion of all software development artefacts, not just source-
code control. CM systems generally support a particular
management philosophy that details what artefacts are put
under configuration control and describes roles and respon-
sibilities for how the management occurs [17,18]. They in-
corporate system building procedures for source code, ver-
sion control procedures for code and documentation, and
change management procedures for all development me-
facts. Also, they generally incorporate configuration status-
accounting functions, which link into Verification and Vali-
dation (v&V) and Release processes [2].

This paper reports the outcomes of a pilot project that
is part of an Australian Research Council SPIRT-funded
collaborative research project between Foxboro Australia
and the Software Verification Research Centre. Foxboro

'Software Verification Research Centre, The University of Queensland,
Brisbane, Qld 4072, Australia. email: pal@svrc.uq.edu.au

+School of Computer Science and Electrical Engineering, The Uni-
versity of Queensland, Brisbane, Qld 4072, Australia email: {anti,
pstroop} @csee.uq.edu.au

tFoxbor0 Australia, PO Box 4009, Eight Mile Plains, Qld 41 13, Aus-
tralia email: markst@foxboro.com.au

Australia build Supervisory Control and Data Acquisition
(SCADA) systems, which often implement safety- and
mission-critical system requirements. CM holds particular
challenges for large-scale, high-assurance software devel-
opments such as these. Such developments involve coniig-
urations consisting of very large numbers of artefacts un-
der individual version control, together with cross-artefact
relationships such as traceability matrices. Because M e r -
ent customers have different requirements, and because sys-
tems evolve over time, many different configurations need
to be supported. A Change Control Board (CCB) oversees
change management, but the scale and complexity of con-
figurations make it difficult to undertake, monitor and verify
implementation of change-management action plans.

The aim of the pilot project was to increase the effective-
ness of change management for complex software develop-
ments, by supporting hierarchically structured subsystems
of a complete development. By subsystem we mean any
logically coherent collection of development artefacts, in-
cluding code, documentation and test sets. (The concepts
introduced here can be generalised beyond software - for
example, to hardware and other system documentation- but
the focus of this paper is on software.) The paper describes
a generic framework within which arbitrary subsystems can
be put under configuration control and have their change
histories recorded, and which provides hooks for tracking
the cause and outcomes of changes. The framework is in-
tended to be generic and to be implemented on top of exist-
ing CM tools.

By adding hierarchical structure to Configuration Items
(CIS), the framework improves overall characterisation of
system configurations, by showing clearly what versions of
what components and subsystems make up a configuration.
It also improves visibility of system changes, by revealing
how individual subsystems have changed. We conjecture
that this information will improve quality and productiv-
ity when developing code, preparing test environments, and
building for release. We also conjecture that placing sub-
systems under configuration management will enable de-
centralisation of the build process. The result will be to
integrate CM tools and processes more effectively into the
overall system development and V&V lifecycle. As a first
step in the implementation of the framework a prototype

275
0-7695-1254-2/01 $10.00 0 2001 IEEE

tool is being developed and will be trialed at Foxboro.
The paper is structured as follows: Section 2 describes

CM in more detail and describes related work. Section 3 de-
fines requirements for the framework. Section 4 defines the
framework‘s notion of subsystem and describes how sub-
systems are characterised. Section 5 explores subsystem
change histories, and Section 6 explores change tracking.
The paper concludes with a brief summary of the h e -
work and a discussion of implementation issues.

2. Background and related work

The key issues in establishing a CM system are:

configuration identification - what Configuration
Items (CIS) are to be considered, and what versions of
what artefacts make up a given CI;

configuration control - how are changes made to CIS,
who authorises them, and how are versions of CIS
stored and retrieved; and

configuration status accounting - what is the status of
a given CI (roughly, what is the development-lifecycle
state of this particular version).

For our pqoses , a CM framework describes the different
types of CIS under consideration and the relationships be-
tween them. A CM framework is thus an important part of a
CM Plan [18], but stops short of defining roles, responsibil-
ities and processes for a full CM system. (Status accounting
is not addressed in this paper.)

The problem of handling Configuration Items (CIS) at
arbitrary levels of granularity has been recognised for some
time [l , 221. Existing CM tools [6, 13, 14, 191 often al-
low aggregation of artefacts into “projects”, which can be
treated as subsystems. These tools typically do not support
versioning of aggregates nor tracking of change histories;
moreover, aggregation tends to be supported only along the
lines of directories (folders) in the file store of the CM
repository. Previous Software Verification Research Cen-
tre (SVRC) research explored management of he-grained
development artefacts and links between them [11, 151 but
stopped short of considering hierarchical structures. The
emergence of HTML and the world-wide web has increased
the impetus for research into change management of highly
interlinked artefacts [SI but full CM solutions are not yet
available.

Lin and Reiss [lo] describe an object-oriented approach
to configuration management, whereby source-code func-
tions and classes are put under version control. Their paper
includes an interesting discussion of version control issues
for hierarchical systems but stops short of a full solution.

Their prototype POEM system is built on top of an object-
oriented database system whereas our approach is indepen-
dent of the underlying database technology. Christensen [5]
describes an approach to configuration and version control
of software artefacts with structural and dependency links.

Configuration and change management of hierarchical
structures is a less developed field. There is a gmwing
body of research into adding versiodrevision control mech-
anisms to Software Engineering Environments (SEE) [9,
12, 16, 211. The main difference is that our framework is
designed to be largely independent of the SEE and instead
works on top of existing CM toolsets, with minimal impact
on existing CM practices.

3. Requirements for a CM framework for sub-
systems

This paper investigates configuration management ap-
plied to subsystems. A subsystem is a partitioning of a soft-
ware development environment, which includes all artefacts
used and developed within the complete software lifecycle.
This partitioning enables the complete system to be viewed
as a hierarchical collection of subsystems, rather than as a
collection of files.

The top-level subsystem in a system is referred to as the
root subsystem, the lowest level subsystems are called leaf
subsystems, and subsystems that fall between these two ex-
tremes are referred to as intermediate-level subsystems, or
simply intermediate subsystems. There may be many lev-
els in a subsystem hierarchy and subsystems may be shared;
see Figure 1.

Figure 1. Terminology in a hierarchical sys-
tem

Top-level subsystems are generally products delivered to
the customer. Intermediate subsystems can also be prod-
ucts, for example communications protocols and product-

276

a~~o~inrt,d-wtih

composed-of

Figure 2. Entity relationships in a subsystem

support tools, such as system-diagnostic tools and tools for
configuring system parameters. Leaf subsystems could be
software modules which are for internal purposes only and
may not be visible to customers.

In developing a configuration management framework,
we need to address the following issues:

0 characterisation of contents of subsystems,

0 visibility of changes between subsystem releases,

0 availability of defect fixes, especially tracking patches

0 integration of changes to subsystems (e.g., propagation
of a defect fix from an earlier version of the subsystem
to the current baseline, and merging of changes from
parallel variants).

A framework for subsystem-based configuration man-
agement is introduced below. The framework will enable
the characterisation of a subsystem, the characterisation of
change to a subsystem and the tracking of the causes and
consequences of change. The framework considers the fol-
lowing issues:

across multiple versions, and

Characterisation - What is, and what is contained in, a
subsystem?

Change Descriptions - In what ways has a subsystem
(and its components) changed between releases, and
how is the change history recorded?

Change Tracking - What causes a change to a subsys-
tem and what relationships exist between the record of
the cause, the record of the solution, and subsystems?

Note that the CM framework is concerned with the log-
ical constitution of subsystems only, and that physical stor-
age issues and tool support are “implementation” issues to

be left for later investigation. Similarly, process issues that
build on the framewop will be left for future work.

4. Hierarchical structuring and characterisa-
tion of subsystems

This section describes how subsystem configurations are
structured and described within the framework. The defini-
tions are recursive, to support hierarchies of arbitrary depth.
There are two aspects to system characterisation:

0 hierarchical structuring of (logical) partitioning of sys-
tem into configuration items, and

0 identification of the particular versions of conf~gura-
tion items making up a given version of the system.

These are treated in Sections 4.1 and 4.2 respectively.

4.1. Subsystem configuration items

This section will idenafy the configuration items either
found within or associated with a subsystem (as shown in
Figure 2) and at which levels of a system certain items
are more likely to be found. Figure 2 concems the hier-
archical structure of the (logical) containment relationship.
Some configuration items are optional at certain levels, but
compulsory at others, while a small subset of configuration
items are compulsory at all levels within a system because
they are necessary to support the CM process. The config-
uration items in a subsystem will be called its constituent
configuration items, or constituents for short:

0 Software development documents - Software develop-
ment documents include requirements, specification,
and architectuddesign documents. Requirements and
specification documents will usually only be found

277

in the root subsystem and in the subsystems corre-
sponding to stand-alone components, such as product-
support tools. They will not usually be present for sub-
systems that exist only as a consequence of design par-
titioning. Design documents should be present for all
subsystems and should contain the appropriate level of
detail. For example, the design document for the root
subsystem should give an architectural overview of the
system and comment briefly on the subsystems that are
combined to make up the system. The detailed docu-
mentation on those lower-level subsystems should be
within the subsystems themselves.

0 Source files - Source files are usually contained in the
leaf subsystems, but may be found in higher-level sub-
systems when code is needed for integration. Source
files are the most common configuration items in tra-
ditional configuration management systems, but in a
subsystem-based approach they are actually optional
in some subsystems.

0 Binaries - Technically, binaries should be able to be
recreated, but storing binaries allows for an exact copy
of the released system to be archived. For the root sub-
system a binary might be an executable, and for an in-
termediate or leaf sub-system it might be a library.

0 User documents - User documentation should be pro-
vided for any subsystem that the user can interact with.
This obviously applies to the root subsystem and to any
product-support tools, but also applies to any subsys-
tem that needs to be understood by the user.

0 Requirements tracing - Any requirements tracing to or
from constituents of a subsystem should be provided.

0 Subsystem - Subsystems can contain subsystems.

0 Test environment - Testing documentation, implemen-
tation, and data files, including test plans, test drivers,
test stubs, test cases, and test results are found at each
level and make up the test environment. The test envi-
ronment for a subsystem may support module, integra-
tion, or system testing and in fact, the test environment
may support more than one type of testing. In many
cases the test environment for a subsystem will itself
be highly stmctured (e.g. with stubs for modules that
interface with the subsystem) and so will itself be a
subsystem.

0 Build environment - Makefiles and associated
configuration-specific build information, including
details on third party tools (such as compilers), can
be found at each level. If the subsystem can be
represented by a binary of some form, whether an
object file, a library or an executable, then all artefacts

needed to recreate the binary should be part of the
subsystem.

It may also be desirable to store data on operational usage
against subsystems.

In the case of subsystems that are released to customers
or other development groups, the released version is nor-
mally accompanied by a Release Note which describes the
new version and how it should be installed. We have chosen
to treat Release Notes as artifacts of the CM process rather
than as constituents of the subsystem itself.

4.2. Subsystem configuration specification

This section describes how subsystems are described
within our framework.

At this point, we introduce a running example to illus-
trate the concepts. To make the example realistic, we have
based it on an abstract view of existing Foxboro software.
We will use the names of the subsystems and CIS used
at Foxboro, but there is no need to understand what these
names stand for in order to understand the examples @NP
and Modbus are different communications protocols). The
example contains

0 5 subsystems: Core, DNPMaster, DNPSlave, Modbus-
Master, and Modbusslave; and

0 2 root systems (for customers interfacing with equip
ment using different protocols, say): RTU+DNP and
RTU+Modbus. RTU+DNP is composed of Core,
DNPMaster, and DNPSlave; and RTU+Modbus is
composed of Core, ModbusMaster, and Modbusslave.

Characterising a subsystem configuration requires con-
sideration of the constituents of the subsystem, as well as
versioning and location information. Different versions of
a subsystem may contain items that are either unique to
the version or shared with other versions. As an example
(see Figure 3), suppose that RTU+DNP (version 1) con-
tains Core (vl), DNPMaster (vl), andDNPSlave (vl) while
RTU+DNP (v2) contains Core (vl), DNPMaster (v2), and
DNF'Slave (v2). Furthermore, while we do not consider CM
tools in detail, certain considerations for tool use cannot be
ignored. In particular, all the configuration items are typ-
ically stored in one or more CM databases, and we record
this as the location of the configuration item.

Full characterisation of a subsystem requires that for
each constituent configuration item, the item name, ver-
sion, and location are stored. This collection of identifiers
is called the Subsystem Conjiguration Spec$cation (SCS).

The SCS associated with a root system is sometimes
called a Bill of Materials. In our framework, however, SCSs
can be used to document individual subsystems, not just
complete systems as shown in the example. Let us assume

278


~~~~ ~ 

Name: RTU+DNP 
Version: vl  
Description: Remote Terminal Unit using DNP protocol 

I Constituents 1 Version I Location I 
I Core I v l  I Srccode ~~ 

DNPMaster 
DNPSlave 

v l  SrcCode 
v l  SrcCode 

Name: RTU+DNP 
Version: v2 
Description: Remote Terminal Unit using DNP protocol 

DNPMaster 
DNPSlave 

I Constituents I Version I Location 
core I v l  I Srccode 

t 

v2 I SrcCode 
v2 I Srccode 

I Constituents Version 
src-codel v l  
src-code2 v l  
src-code3 v l  

Figure 3. Subsystem Configuration Specifica- 
tions for two versions of RTU+DNP. 

Location 
SrcCode 
SrcCode 
SrcCode 

that the subsystem DNPMaster contains the following con- 
figuration items: 3 source code files, a Makefile, a protocol 
specification, a design document, and a test subsystem. The 
SCS for DNPMaster is shown in Figure 4. 

protocol-spec 
dnp-design 
DnpTest 

~~ 

v4 Documentation 
v3 Documentation 
v l  TestEnv 

I Makefile I v l  I BuildEnv 

Figure 4. SCS for DNPMaster. 

For purposes of status accounting, it is desirable that 
SCSs be maintained throughout development, not just at re- 
lease. To reduce the likelihood of human error, SCS main- 
tenance should be as automated as possible. Section 7.2 
outlines our plans for how this would be done. 

5. Characterising how subsystems have 
changed 

The changes on a subsystem can be understood by in- 
vestigating the possible changes that items in a subsystem 
undergo, and which of the complete set of changes apply 
to a particular item. We consider here the logical princi- 
ples for making change between subsystem releases visible. 
The main principle is that current and previously released 
versions of subsystems should be retrievable. Not only do 
we wish to understand how a particular release has changed 
from its parent, but we wish to be able to h d  the difference 
between any two releases. 

5.1. Change types 

Any constituent item in a subsystem can undergo one or 
more of the following changes between subsystem releases: 

add a new item is added to the subsystem 

delete: an existing item is deleted from the subsystem 

modify: an existing item is modified (i.e., replaced by 
a Merent version of the item) 

split: an existing item is split into several new items 
(like a delete followed by several adds). For example, 
the subsystem Core from our example could be split 
into two subsystems, IO and Processing. 

combine: several existing items are combined to form 
a new item (like several deletes followed by an add) 

derive: a new item is derived from existing items (like 
an add) 

replace: a new item replaces an existing item (like a 
delete followed by an add) 

move: an item is moved from one subsystem to an- 
other 

This list has been compiled from the kinds of change types 
supported by a whole range of tools (including requirements 
management tools) and not simply existing CM tools [ 1 11. 
The first three change types are primitives; the others can 
be expressed as combinations of these, but are useful for 
understanding the evolution of a subsystem. It is our inten- 
tion for many of these changes to be tool-tracked and not 
manually recorded: this is discussed further below. 

Not all artefacts undergo all of these types of change. For 
example, binaries are only ever derived (through compila- 
tion): it is necessary to track the version of binaries associ- 
ated with a subsystem, since they may not get updated. 

279 



5.2. Change descriptions the constituent version information can be recovered from 
the SCSs. See Figures 5 and 6 below for examples. 

We use the following labels corresponding to the change 
types Of the Previous section: 

When a constituent of a subsystem changes, the change 
needs to be noted against both the constituent and the sub- 
system itself. This situation is analogous to source files un- 
der CM, whereby a description of recent changes are in- 
cluded in the file header as well as being recorded in the 

0 added the item did not exist in the parent version but 
has been added to the current version 

- 
CM tool. 

We propose a document called a C h g e  Description to 
record the changes made to subsystems. The Change De- 
scription will contain: 

current and previous release identifiers, 

0 summary of changes to the subsystem as a whole, and 

0 a list of constituents of the subsystem and how they 
changed. 

Note that “root versions” (initial baselines) are special 
cases and do not q u i r e  Change Descriptions, only SCSs. 

The summary of the changes should be an abstract de- 
scription of the changes made to the subsystem. This de- 
scription may include whether the change was corrective, 
perfective, adaptive, or a combination of these: 

0 Corrective changes are those made when fixing a de- 
fect in the system. 

0 Pe?$ective changes are those made when improving a 
working system, such as when re-engineering the sys- 
tem to improve its performance or maintainability. 

0 Adaptive changes are those made when reacting to a 
change in the way the system will be used, such as 
when adapting to a new platform or adding a new com- 
munication protocol. 

Furthermore, the types of configuration items affected and 
the consequences of the changes should be recorded. For 
instance, did the change predominately affect source files 
(as is often the case with corrective changes)? Was it an 
adaptive change that caused change across much of the sub- 
system? Or did it perhaps mainly affect the design docu- 
mentation? Furthenno=, the consequences of a subsystem 
change can either be localised (i.e., the subsystem’s inter- 
face and specilied behaviour do not change) or may need 
propoagating beyond the subsystem. 

5.3. Structure of subsystem change descriptions 

For our purposes, it is sufficient for a Change Description 
to record the current version number of the subsystem and 
its parent version number, together with a list of all con- 
stituents of the two versions and how they have changed 

0 deleted: the item appears in the parent version but not 
the current version 

0 none: the item was unchanged between subsystem re- 
leases (this is needed for completeness) 

0 split-up: the item was split up into new items and no 
longer exists in the c k n t  version. 

0 split-from: the item arose from spliaing up an item in 
the parent version 

0 combined-into and combined-from: similar 

0 replaced and replacement similar 

0 derived: the item was derived from other items in the 
current version 

0 moved-here: the item was moved (unchanged) from 
another subsystem 

0 moved-away: the item was moved to another subsys- 
tem 

Using the running example, a Change Description for 
RTU+DNF’ could be as shown in Figure 5. Continuing the 

example, a Change Description for DNPMaster could be as 
shown in Figure 6. Space does not permit illustration of the 
Change Description for DNPSlave. 

6. Change tracking for subsystems 

6.1. Motivation 

In this section the focus is on (defect and) change truck- 
ing: i.e., the recording and tracking of problems, how they 
are solved, and the resulting changes they cause to subsys- 
tems. Following Foxboro’s current practice, we will assume 
that a document called a System Incident Report (SIR) is 
used to record causes of problems, and a Program Amend- 
ment Description (PAD) to record the changes resulting 
from solving problems. 

A method of relating SIRs to PADs, SIRs to releases, and 
PADs to releases is necessary to support effective configu- 
ration management (see Figure 7). In particular, capturing 
these relationships will enable later defect fixes to be more 

280 



Name: RTU+DNP 
Current version: 2.0 
Parent version: 1 .O 
Summary of changes: RTU+DNP changed in this release 
as a consequence of changes to both of the DNP sub- 
systems. DNPMaster underwent trivial changes, however 
DNPSlave changed significantly (see DNPSlave change de- 
scription for details). 

SIR -----> 
I 

Version L- - - SIR 
\ 

1.0 , , 
y.-.. 

within the subsystem was 

pletely replaced in this re- 

Version 
1.1 

Version - 

Figure 5. Example Change Description for 
RTU+DNP 

Name: DNPMaster 
Current version: 2.0 
Parent version: 1 .O 
Summary of changes: This release differs from its par- 
ent in documentation ody. The design documentation has 
changed and some requirements tracing has been added. 

pi--- 
src-code1 
src-code2 
src-code3 
Makefile 
protocol- 
spec 
dnp-design 

dnp-master- 
design 

dnp-trace 

Change 
none 
none 
none 
none 
none 

replaced 

replacement 

added 

none 

Description 

replaced by dnp-master- 
design 
The design document, dnp- 
master-design, is a new de- 
sign document that accu- 
rately reflects the imple- 
mented system 
A requirements trace be- 
tween the protocol-spec and 
the dnp-master-design has 
been added to the subsys- 
tem. 

Figure 6. Example Change Description for 
DNPMaster 

- Versions (parentlchild) 

. . . . =- Implicit Reference 
- - -* Explicit Reference 

Figure 7. Relationships between SIRs, PADS, 
and releases 

effective as the current state of a release can be better un- 
derstood and it will be easier to apply a patch to a parallel 
or child version. 

At Foxboro a SIR acts both as the trigger for action (re- 
medial or otherwise) and as documentation of the cause (in- 
cident or creative, e.g., a bug report or requirement change). 
A completed SIR also references the PAD(s) that document 
the solution. A PAD documents the solution or why the 
program was amended, which files are changed, the final 
version, and any associated PADS. 

Both of these concepts, which can be applied within 
subsystem-based CM, focus on the system as a whole. Each 
of them (SIR and PAD) focus at a he-grained level on the 
cause and specifics of the change, rather than the difference 
between two versions, the delta (A). The delta is the collec- 
tion of changes made to a subsystem that, when applied in 
sequence, move a subsystem from one version to another. 
Furthermore, while a single PAD may record which ver- 
sions it maps between, more than one PAD can apply to a 
single SIR and more than one SIR can apply to a particular 
version. 

6.2. Subsystem-based change tracking 

In subsystem-based CM, associated with each subsystem 
should be a record of which SIRs led to the new version and 
which PADs document the details of that transition. Storing 
these relationships with a subsystem means that from any 
version of any subsystem it will be possible to trace not only 
all incidents that have been handled, but also how they were 

281 



Figure 8. Relationships between Change De- 
scriptions, SIRS, PADS, and releases 

handled This is particularly useful when trying to maintain 
consistency across variants of a subsystem. 

To support change tracking, the last column in a Change 
Description contains the PADs associated with a changed 
subsystem. Figure 8 shows how change descriptions re- 
late to the existing change tracking mechanisms (PADs and 
SIRS). 

7. Conclusion 

7.1. S u m m a r y  

A framework for subsystem-based configuration man- 
agement was introduced that enables hierarchical software 
subsystems, to be put under configuration and version con- 
trol. By subsystems we mean logically coherent collections 
of software development artefacts, including code, docu- 
mentation and test sets. The framework is designed to sit 
on top of existing CM tools and to support configuration 
management of subsystems independently of the tools’ un- 
derlying file structures. 

The framework addresses the following issues for sub- 
systems: 

a Characterisation: What is, and what is contained in, 
a subsystem? Subsystem Configuration Specifications 
(SCSs) were introduced in Section 4 to provide a 
mechanism for characterising a version of a subsys- 
tem. 

a Change: In what ways can a subsystem (and its com- 
ponents) change? Changes to a subsystem were dis- 

a 

cussed in Section 5,  where Change Descriptions (CDs) 
were introduced as a mechanism for documenting the 
changes between a version of a subsystem and its par- 
ent. 

Change Tracking: What causes a change to a subsys- 
tem and what relationships exist between the record 
of the cause, the record of the solution, and subsys- 
tems? Section 6 presented an overview of existing 
Foxboro change tracking mechanisms and highlighted 
how a simple extension to the previously introduced 
Change Descriptions could support change tracking 
across subsystems. 

Figure 9 presents, in diagrammatic form, the relation- 
ships between the various entities considered in this paper. 
A SCS specifies a single version of a subsystem and that 
SCS is used to build the CD for that version of the subsys- 
tem. The CD contains a reference to the parent version as 
well as the current version of the subsystem. All PADs that 
triggered change are recorded in the CD. 

7.2. Future work 

Development of tool support for the approach is under- 
way, focussing on two main areas. The first area is con- 
cerned with specifying, designing and prototyping a tool to 
support subsystem build management. The tool would be 
used by a Subsystem Build Manager to collect together the 
artefacts that make up a subsystem release and to generate 
the SCS for the new release. It will provide an SCS-like 
interface for the Subsystem Build Manager to interact with 
existing CM tools. The prototype tool will interact with 
Continuus Changesynergy [19], a CM tool from Telelogic. 

At this stage no change is proposed to the way software 
developers use CM tools: they will continue to check in ver- 
sions of basic software artefacts (source files, software de- 
velopment documents, binaries and user documents). How- 
ever, the new tool will support the subsystem build manager 
by: 

a 

a 

a 

a 

retrieving version information for individual (basic) 
software artefacts in the tool repositories; 

managing the subsystem hierarchy; 

tracking which (versions of) artefacts have been in- 
cluded in the new buil& and 

recording an audit trail of user operations and automat- 
ically generating the skeleton of the Change Descrip- 
tion (CD) for the new build. 

The description field of the CD will need explicit user input, 
but the tool would generate the item list and change types 
automatically. 

282 



references 

Figure 9. Entity relationships in CM framework 

The second area for investigation of tool support con- 
cerns the auto-extraction of (parts of) the description field of 
CDs from artefact change-history information stored in the 
CM tool. This may involve developing guidelines for how 
such information should be recorded in the CM tool, and 
reverse engineering of a sample population in the CM tool 
to investigate feasibility. An outstanding research problem 
is to determine how far up the subsystem hierarchy change 
descriptions will need to percolate. 

Further investigation will also be undertaken to explore 
addition of status accounting/auditing to the framework de- 
fined here: the goal is to support correctness checking of 
configurations [4]. This is expected to be mostly a mat- 
ter of adding attributes to subsystem constituents to record 
their developmentN&V status and to record who instigated 
the change; it will however require investigation of process 
changes resulting from use of subsystems and imposition 
of status-related constraints and checks. For example, if 
the subsystem contains any “derived” artefacts and subse- 
quently undergoes change, there should be a check that the 
items from which the artefact was derived have not them- 
selves changed, otherwise the derivation may no longer be 
valid. The addition of status accounting/auditing is our pre- 
ferred solution to the problem of unauthorised change. 

References 

[l] P. Bennett. Small modules as configuration items in certi- 
fied safety critical systems. In F. Redmill and T. Anderson, 
editors, Proc 6th Safety Critical Systems Symposium, pages 
62-69, Birmingham, UK, 1998. Springer Verlag. 

[2] E. Bersoff, V. Henderson, and S .  Siegel. Software configu- 
ration management: a tutorial. IEEE Computer, pages 6-14, 
Jan. 1979. 

[3] E. Bersoff, V. Henderson, and S .  Siegel. Software Conjgu- 
ration Management. Prentice Hall, 1980. 

[4] S .  Choi and W. Scacchi. Assuring the Correctness of config- 
ured software descriptions. ACM SIGSOFTSofnyare Engi- 
neering Notes, 1466-75, 1989. Roc 2nd Int Workshop on 
Software Configuration Management. 

[5] H. Christensen. Experiences with architectural software 
configuration management in Ragnarok. In B. Magnusson, 
editor, Proc. 8th Software Configuration Management Sym- 
posium, number LNCS 1439, pages 67-74. Springer Verlag, 
1998. 

[6] CVS. Concurrent Version System. http://www.cvshome.org. 
[7] S .  Dart. Concepts in configuration management systems. In 

Proc 3rd Znt Sw Config Mgmt Workshop, pages 1-18, Trond- 
heim, Norway, June 199 1. IEEE Comp Soc. 

[8] S .  Dart. Content change management: problems for web 
systems. In Proc 9th Int System Config Mgmt Sympo- 
sium (SCM-9), pages 1-16, Toulouse, France, Sept 1999. 
Springer Verlag. 

[9] A. Gustavsson. Software Configuration Management in an 
Integrated Environment. PhD thesis, Department of Com- 
puter Science, Lund University, Sweden, 1990. Also avail- 
able as Technical Report, LU-CS-TR:90:52. 

[lo] Y.-J. Lin and S. Reiss. Configuration management with log- 
ical structures. In Proc. IEEE 18th Con$ on Software Eng., 
pages 298-307. IEEE Press, 1996. 

[ 111 P. Lindsay, Y. Liu, and 0. Traynor. A generic model for fine- 
grained configuration management including version con- 
trol and traceability. In Proc. Australian Sofhyare Engi- 
neering Conference (ASWEC’97), pages 27-36. IEEE Com- 
puter Society Press, 1997. Also appears as SVRC TR 9745, 
http~/svrc.it.uq.edu.au/Bibliography/svrc-tr.html?9745. 

283 

http://www.cvshome.org


[ 121 B. Magnusson, U. Asklund, and S. Minor. Fine-grained re- 
vision control for collaborative software development. In 
Pmc ACM SIGSOFT'93 Symp on Foundations of Sw Eng, 
Los Angeles, California, Dec 1993. ACM. 

[13] Microsoft. visual Sourcesafe. 
hnp.Jlmsdn.microsoft.com/ssafe. 

[ 141 Rational. Clearcase. http://www.rational.com. 
[15] K. Ross and P. Lindsay. Maintaining consistency under 

changes to formal specifications. In Pmc. 1st Int. Symp. of 
Formal Methods Europe (FME'93), LNCS 670, pages 558- 
577. Springer Verlag, 1993. Also appears as SVRC TR 93-3, 
http~/svrc.it.uq.edu.au/Bibliopphy/svrc-tr.html?93-03. 

[ 161 S. Sachweh and W. Schger. Version management for tightly 
integrated software engineering environments. In Pmc, 7th 
Inr. Con$ on Software Eng Environments, pages 21-31, The 
Netherlands, 1995. IEEE Computer Society Press. 

[17] Standards Australia. Software configuration management. 
Au~tralian Standard, AS 4043-1992, IEEE 10421987, 
1992. 

plans. Australian Standard, AS 4042-1992, IEEE 828~1990, 
1992. 

[ 191 Telelogic. Continuus Changesynergy 
http://www.continuus.com. 

[20] U.K. Ministry of Defence. Configuration management. De- 
fence Standard 05-57Assue 3, July 1993. 

[21] B. Westfechtel. Revision control in an integrated software 
development environment. ACM SIGSOFT Sw Eng Notes, 
17(7):9&105, 1989. 

[22] D. Whitgift. Methods and Tools for Sofrware Configuration 
Management. John Wiley and Sons, 1991. 

[18] Standards Australia. Software configuration management 

284 

http://www.rational.com
http://www.continuus.com

