

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011...$5.00.

UMLDiff: An Algorithm for Object-Oriented
Design Differencing

Zhenchang Xing and Eleni Stroulia
Computing Science Department

University of Alberta
Edmonton AB, T6G 2H1, Canada

{xing, stroulia}@cs.ualberta.ca

Abstract
This paper presents UMLDiff, an algorithm for automatically de-
tecting structural changes between the designs of subsequent ver-
sions of object-oriented software. It takes as input two class models
of a Java software system, reverse engineered from two corre-
sponding code versions. It produces as output a change tree, i.e., a
tree of structural changes, that reports the differences between the
two design versions in terms of (a) additions, removals, moves,
renamings of packages, classes, interfaces, fields and methods, (b)
changes to their attributes, and (c) changes of the dependencies
among these entities. UMLDiff produces an accurate report of the
design evolution of the software system, and enables subsequent
design-evolution analyses from multiple perspectives in support of
various evolution activities. UMLDiff and the analyses it enables
can assist software engineers in their tasks of understanding the
rationale of design evolution of the software system and planning
future development and maintenance activities. We evaluate UM-
LDiff’s correctness and robustness through a real-world case study.

Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement –restructuring,
reverse engineering, and reengineering.

General Terms: Design

Keywords: Design differencing, structural evolution, design un-
derstanding, design mentoring

1 Introduction
Change is an essential feature of the evolutionary development of
object-oriented software systems and recognizing the changes that
a system has gone through its lifecycle is essential to understanding
how and why a system has reached its current state. It is, therefore,
of critical importance that software engineers are able to under-
stand the various types of design-level structural evolution that an
object-oriented system may have gone through, such as refactor-
ings involving moving features among classes, restructuring of
data structures or class interfaces, changes to the interactions be-
tween classes and so on. These elementary structural-evolution
operations are usually intended to improve the quality of the soft-
ware system, such as its understandability, extensibility and main-
tainability. Thus, recognizing them is crucial not only for under-
standing the system design and its evolution but also for obtaining

an accurate picture of the quality requirements of the system so
that it can be consistently evolved.

There has been some work [4,5,6] that models the changes of a
system’s components in terms of CVS-like deltas, which record
lines of code that have been added, deleted, or changed, as reported
by GNU diff-like tools. These approaches are simple to implement,
since it is easy to extract the deltas from a versioning system, such
as Concurrent Version System (CVS). Such delta reports are in-
tended to assist software developers in merging different revisions
of the system source code. However, GNU diff-like tools are essen-
tially lexical-differencing tools and ignore the high-level logi-
cal/structural changes of the software system. When the intension
is to build an accurate evolutionary history of a software system,
GNU diff misses a lot of pertinent information. For example, a
class renaming or a method movement to another class would most
likely be reported as two separate activities: the original entity has
been removed and the modified one has been added.

Source-code metrics [2,13] and clone detection [19,22] may
help to infer the renamings and moves of design entities. Unfortu-
nately, code-line metrics are at too low level of abstraction and do
not necessarily correspond to the developers’ intuitions about the
system. Consistently maintained change documentation [5,6], if it
exists, is a reliable source of information as to what has been
changed and what is the rationale behind the change. However,
more frequently than not, documentation is vague and incomplete
about what has actually been modified. Visualization of low-level
data, such as CVS-like delta and code metrics, may help to capture
the higher-level connections between moved and renamed ele-
ments. But, visualization approaches [4,13,19] are inherently lim-
ited because they assume a substantial interpretation effort on be-
half of their users and become “unreadable” for large systems.

Clearly, there is a need for automatic tools that can assist soft-
ware engineers to reason at the design level about which structural
changes have occurred in long-lived evolving software systems and
why. In this paper, we present an automated UML-aware struc-
tural-differencing algorithm, UMLDiff. It takes as input two class
models of an object-oriented software system, reverse engineered
from two corresponding code versions. UMLDiff traverses the two
class models, identifies corresponding entities based on their name
and structure similarity, and produces a change tree, i.e. a tree of
structural changes, which records the changes between the two
system versions in terms of additions, removals, moves, renamings
of various types of design entities, such as packages, classes, inter-
faces, fields and methods in Java, the changes to their attributes,
such as visibility and modifiers, and the changes of relations
among these entities.

UMLDiff is at the core of our design-evolution analysis work,
which has been implemented in the JDEvAn tool (Java Design
Evolution and Analysis). JDEvAn has been developed as an
Eclipse plugin with the objective of investigating the change pat-

54

terns of software evolution, exploring the underlying motivations
behind them, and guiding future development and maintenance
activities. UMLDiff enables JDEvAn to build a detailed and accu-
rate picture of the software system and its components’ design
evolution without requiring explicit evolution documentation in the
form of consistent modification requests and change logs.

The rest of the paper is structured as follows. Section 2 relates
this work to previous research. Section 3 describes the meta-model
assumed by UMLDiff and Section 4 discusses the algorithm in
detail and summarizes a taxonomy of structural changes reported
by UMLDiff. Section 5 discusses the visualization of structural
changes. Sections 6 and 7 evaluate UMLDiff and argue for its use-
fulness, respectively. Concluding remarks and plans for future
research are outlined in Section 8.

2 Related work
GNU diff, a text-comparison tool, is commonly used to reconstruct
the changes between subsequent versions of a software system. Its
output, CVS-like deltas, together with modification requests and
bug reports, have been substantially used for aiding software evo-
lution and maintenance activities [4,5,6,14]. However, since tools
like GNU diff consider a software system as a set of files contain-
ing lines of text, they report changes at the lexical level and ignore
the high-level logical-structure changes of the software system.

There exist other differencing techniques that take into account
various types of information in addition to lines of text. Zaremski
and Wing [27] investigated signature matching, such as for exam-
ple the comparison of the types of a function’s input and output
parameters, for retrieving reusable software components. Ostertag
et al. [17] relate the software library components with manually-
defined features and terms through domain analysis. They also
define manually the weighted subsumer and feature graph over
components, based on which component similarity may be com-
puted. Semantic Diff [11] makes use of the local dependency
graph and works at the intra-procedure level only not the object-
oriented system as a whole. Horwitz developed a technique [10]
for detecting statement-level semantic and textual modifications
based on augmented control-flow graph; this method is applicable
to a simplified C-like programming language and is not suitable for
object-oriented software.

However, object-oriented software systems are better under-
stood in terms of structural and behavioral models, such as UML
class and sequence diagrams. Unfortunately, syntax-specific struc-
tural differencing algorithms report changes in terms of their own
primitives. For example, XML-differencing algorithms [29] report
changes to XML elements and attributes, ignoring the domain-
specific semantics of the concepts represented by these elements:
XML-differencing tools of XMI (XML Metadata Interchange)
representations of UML models are agnostic of the UML semantics
and thus generally do not correspond to the developer’s intuition
very well.

Within various UML modeling tools, there are UML-
differencing methods, such as [16], that detect differences between
subsequent versions of UML models, assuming that these models
are manipulated through the tool that assigns persistent identifiers
to all model elements. This capability is clearly irrelevant when the
whole development team does not use the same tool for all their
development activities, which is usually the case. In contrast, UM-
LDiff, aware of UML semantics, is able to infer renamings and
moves of various design entities based on their name and structure
similarity.

There has been some work at investigating the use of compara-
tive analysis of different snapshots of a software system for draw-
ing inferences regarding its evolution. Demeyer et al. [2] define
four heuristics based on the comparison of source-code metrics of
two subsequent system snapshots to identify refactorings of three
general categories. Rysselberghe [19] investigated the use of clone-
detection to identify move and renaming refactorings. In contrast,
UMLDiff enables richer and more accurate analyses based on its
structural-change reports.

Ryder’s group also work on comparative analysis of structural
changes [18]. They define a set of atomic changes derived from the
comparison of the abstract syntax trees of corresponding classes in
two versions of a project. Apiwattanapong et al. [1] use the en-
hanced control-flow graph to model methods of object-oriented
programs and identify similarities and differences between two
methods based-on graph isomorphism. The major objective of their
work is to analyze the impact of changes on test cases, while our
work is aimed at recovering higher-level design evolution knowl-
edge.

There has been some work at analyzing the changes of software
at the design level. For example, Egyed [3] has investigated a suite
of rule- and constraint-based and transformational comparative
methods for checking the consistency of the evolving UML dia-
grams of a software system. Spanoudakis and Kim [21] developed
a probabilistic message matching algorithm that detects the over-
laps between messages that are likely to signify the invocation of
operations with the same implementation expressed in UML object
interaction diagrams and check whether the overlapping messages
violate the consistency rules. However, they cannot surface the
specific types of changes as reported by UMLDiff and these pro-
jects have not explored the product of their analyses in service of
software evolution understanding and mentoring.

In terms of research objectives, the project most similar to our
work is BEAGLE [22] developed by Tu and Godfrey. Their tool is
also aiming at analyzing the structural evolution of software sys-
tem, which depends on origin analysis to determine the “origin” of
“new” files. Their recent work [8] also uses origin analysis to de-
tect the merging and splitting of source-code entities. Origin analy-
sis works at the file-structure level: it detects old functions as the
“origin” of new ones based on a combination of clone detection
and name and call-relation matching assuming an interactive step
for detecting file merging and splitting. In contrast, UMLDiff is
automated and examines the logical design of the system to recog-
nize the design-level structural evolution of that system.

3 The meta-model
UMLDiff compares the logical view [12] of object-oriented soft-
ware systems, which concerns classes, the information they may
own, the services they can deliver, and the associations and relative
organization among them. Its primary input is the system’s source
code, residing in a versioning system. JDEvAn’s fact extractor
recovers a data model of the subject system’s class design. Essen-
tially, the data meta-model is defined according to the semantics of
the UML static-structure model [15], which is formally a graph, GD
(VD, ED). The nodes set, VD, contains program entities of the types
supported by the Java programming language 1 , i.e., package,
(anonymous) class, interface, array type, primitive type, field and

1 The focus on Java is pragmatic; the JDEvAn is not restricted to any spe-
cific object-oriented programming language, since its data meta-model is
essentially defined according to the UML semantics. Its design and imple-
mentation are extendible to other programming languages, assuming the
availability of appropriate fact extractors.

55

block (including method, constructor and initializer). In addition, a
virtual root node is included in each model, corresponding to the
system-version as a whole.

Each extracted entity is described in terms of its type, name,
visibility (public, protected, private, or default if declared without
any access modifier) and non-access modifiers (static, final, syn-
chronized, volatile, transient, native, abstract, strictfp), location in
the source file, whether it belongs in the system source code or in a
library, and the version of the system in which it belongs. The
name of array types is in the form of “basetypequalified-
name.dimension”. The name of packages, named classes, inter-
faces and fields is their declared identifier. The name of methods
and constructors is in the form of “identifier(paramtype_list)”.
JDEvAn’s fact extractor assigns names to anonymous classes and
initializers as follows: for anonymous classes, “new super-
type_identifier”; for class initializers,
“{class_identifier.$initializer_number}”; for field initializers,
“{field_identifier=…}”. Finally, a fully-qualified prefix is added in
front of the names of library entities.

The edge set, ED, contains tuples of the form (relation, v1, v2),
where v1 and v2 are nodes and relation is a UML dependency be-
tween them. The supported dependency types are containment,
declaration, inheritance, interface implementation, field read/write
and method call (including this, super, and constructor call), class
creation, field data type, method return type, parameter type, and
exceptions declared and thrown by a method. The virtual root node
(corresponding to a system-version) is assumed to contain all the
package nodes declared in that system-version.

JDEvAn implements a fact extractor based on the Eclipse Java
DOM/AST model [28]. In particular, it implements an abstract
syntax tree (AST) visitor to visit the appropriate source code enti-
ties and relations as the Java program is being parsed. The ex-
tracted ground model facts are stored in a PostgreSQL relational
database (entity and relation table). Based on these ground facts, a
variety of derived facts are inferred, such as top-level type or
member type, methods declared in a class or an interface, inherit-
able and inherited fields/methods, and so on. In most cases, derived
facts are defined as database views; however, to improve
JDEvAn’s performance, some frequently used derived relations,
such as method implementations and overrides, class/interface
usage, etc., are computed and stored into the database tables at the
end of fact-extraction process.

To address the fact that PostgreSQL lacks recursive computa-
tion capabilities, which is essential to computing the transitive
closure of various relations among entities, Simon’s transitive clo-
sure algorithm [20] has been implemented as a database server-side
extension to compute, at the end of the fact-extraction process, the
transitive closure of the containment and inheritance hierarchy,
field read/write, method call, and class/interface usage relations,
which are populated in the corresponding transclosure table.

Furthermore, the number of times that a field is read/written, a
method is called, a class is created, and a class/interface is used is
recorded. These numbers are subsequently used to compute struc-
tural similarity (see algorithms 2 and 3).

4 Design Comparison with UMLDiff
Given two versions, A and B, of a software system and their corre-
sponding models - instances of the meta-model discussed in sec-
tion 3 - UMLDiff recovers the design-level structural changes that
occurred as the system evolved from A to B.

UMLDiff assumes a “principled” usage of the versioning sys-
tem: if a substantial number or a complex set of changes are made

to a particular version before it is stored back in the version-
management system, the accuracy of UMLDiff will most likely
suffer (see section 6 for a detailed discussion on this subject).

UMLDiff is a domain-specific structural-differencing algorithm,
aware of the UML semantics. As per the adopted meta-model, the
software system is modeled as a directed graph. Table 1 lists the
relations and the types of entities that they relate, which induce a
containment-spanning tree on the directed graph.

Table 1. The children of design entities
Entity type Type of children of entity
Virtual root Packages, array types (assumed to be contained)
Package Top-level classes and interfaces it contains
Class Fields, methods, constructors, initializers, inner

classes and interfaces it declares
Interface Fields, methods, inner classes and interfaces it

declares
Field Initializer it contains
Block Local classes, anonymous classes it contains

Furthermore, based on UML semantics, the containment and
declaration relationship defines a logical partial order over entity
types: virtual root > package > (class, interface) > (field, block).
Conceptually, UMLDiff traverses the containment-spanning trees
of two compared models, moving from one logical level to the next
in both trees at the same time. It starts at the virtual root (system-
version) level, progressing down to packages, classes and inter-
faces, and finally, fields and blocks. At each logical level, it identi-
fies corresponding entities of the same type as representing a single
conceptual entity in two versions of the system. UMLDiff recog-
nizes that an entity e1 in version A and an entity e2 in version B are
the “same”, i.e., they correspond to the same conceptual entity,
when (a) they have the same or similar name (name-similarity
heuristic), or (b) they have similar relations to other entities, al-
ready established to be the “same” (structure-similarity heuristic).

Name similarity is a “safe” indicator that e1 and e2 are the same
entity: it is indeed a rare phenomenon that an entity is removed and
a new entity with the same name but different behaviour is added
to the system. UMLDiff recognizes same-name entities first and
uses them as “landmarks” to subsequently recognize renamed and
moved entities. When an entity is renamed or moved, as is fre-
quently the case with refactorings aimed at improving the extensi-
bility and maintainability of the system, its relationships to other
entities, such as the members it contains, the fields it reads/writes,
the methods it calls or is called by, etc., tend to remain the same for
the most part. Therefore, by comparing the relationships of two
same-type entities renamings or moves can be inferred: if they
share “enough” relationships to known-to-be-same entities they are
the “same”, even though their names (renamed) and/or their parent
entities in the containment-spanning tree (moved) are different.
Whenever two entities are identified as renamings or moves, this
knowledge is added to the current landmarks’ set and is used later
on to further match as yet-unmatched entities. This process contin-
ues until it reaches the logical-leaf level of the spanning trees and
all possible corresponding pairs of entities have been identified.
4.1 Similarity metrics
Let us now discuss in detail the two heuristics (name-similarity and
structure-similarity) for recognizing the conceptually same entities
in the two compared system versions. These two heuristics, based
on the semantics of the object-oriented design domain, enable
UMLDiff to recognize that two entities are the “same” even after
they have been renamed and/or moved. The key to determining

56

such correspondence between entities is to compare the similarities
between them, both at the lexical and at the design-structure level.
Note that in the following discussion, the term “matched entities”
refers to same-name entities, while “general-matched entities”
refers to matched, renamed, and moved entities.
4.1.1 Name similarity
The longest common subsequence (LCS) algorithm is frequently
used to compare strings, such as program identifiers. A commonly
used metric [8] based on LCS, is shown in eq. 1:

length(LCS(s1, s2)) * 2 / (length(s1)+length(s2)) (1)
LCS reflects the lexical similarity between two strings, but it is

not very robust to changes of word order, which is common when
renaming an entity, changing the order of method parameters, etc.
For example, according to eq. (1), AddVerticalAction (score 0.8) is
more similar to VerticalDrawAction than DrawVerticalAction
(score 0.77).

double nameSimilarity(s1, s2)
1. HashSet pairs1 = pairs(s1.toUpperCase());
2. HashSet pairs2 = pairs(s2.toUpperCase());
3. int union = pairs1.size() + pairs2.size();
4. pairs1.retainAll(pairs2);
5. int intersection = pairs1.size();
6. return intersection*2.0/union;

Algorithm 1. Computing name similarity

To address this problem, we have defined a new name-
similarity metric (see algorithm 1) in terms of how many common
adjacent character pairs are contained in two compared strings. The
pairs(x) function returns the pairs of adjacent characters in a string
x. By considering adjacent characters, the character ordering in-
formation is to some extent taken into account. The similarity be-
tween two strings s1 and s2 is twice the number of character pairs
that are common to both strings divided by the sum of the number
of character pairs in the two strings. It is a value between 0 and 1.
We choose to compute name-similarity case-insensitively, since it
is common that the name is misspelled with the wrong case or is
modified with just case changes. According to algorithm 1, Draw-
VerticalAction (score 0.88) is more similar to VeritcalDrawAction
than AddVerticalAction (score 0.73). This metric is cheap to calcu-
late and, based on our case studies, it seems to result in more intui-
tive scoring.
4.1.2 Structure similarity
Table 2 lists the entities and relations’ facts that UMLDiff uses to
compute the structure-similarity between two entities of the same
type. These facts are readily available in the extracted data model
(see section 3). In principle, other facts could be used as well and
the JDEvAn implementation is extendible to include them (see
algorithm 2 and 3). For example, interface implementation can be
included when determining class renamings, the data type can be
included when determining potential field moves, and so on.

Table 2. Facts for computing structure similarity
Entity Type Entity and relationship facts
Package The top-level classes and interfaces it contains
Named class
and interface

The fields, methods, constructors, inner classes
and interfaces it contains; classes/interfaces it
uses and is used by

Field The methods/constructors that read and write it
Method and
constructor

Type of parameters it declares; fields it reads
and writes; methods/constructors it calls and is
called by

The algorithm 2 returns a normalized value indicating how
similar the two sets, e_of_r1 and e_of_r2, are. The e_of_r1 and
e_of_r2 sets contain entities that are related to the two compared
entities, e1 and e2, according to a given relation type (relation_type)
(lines 1,2). It essentially computes the intersection of the two sets
based on a given equals function (line 7). This equals function can
examine whether the names of the entities er1 and er2 are the same,
or whether the two entities er1 and er2 have already been estab-
lished as a pair of general-matched entities. The intersection set
effectively incorporates knowledge of any “known landmarks”
(previously established general-matched pairs of entities).

double structureSimilarity(e1,e2,relation_type)
1. Set e_of_r1 = getEntitiesOfRelation(e1, relation_type);
2. Set e_of_r2 = getEntitiesOfRelation(e2, relation_type);
3. if(e_of_r1.size == 0 and e_of_r2.size==0)
4. pow++; return power(nameSimilarity, pow);
5. int beforecount=0, aftercount=0;
6. for all er1 in e_of_r1 and all er2 in e_of_r2
7. if (er1.equals(er2)) {
8. beforecount+=getCount(e1, er1, relation_type);
9. aftercount+=getCount(e2, er2, relation_type);
10. e_of_r1.remove(er1);
11. e_of_r2.remove(er2); }
12. int beforeleftcount=0, afterleftcount=0;
13. for all er1 left in e_of_r1
14. beforeleftcount+=getCount(e1, er1, relation_type);
15. for all er2 left in e_of_r2
16. afterleftcount+=getCount(e2, er2, relation_type);
17. int min=min(beforecount, aftercount);
18. int max=max(beforecount, aftercount);
19. return min*1.0/(max+beforeleftcount+afterleftcount);

Algorithm 2. Computing structure similarity

The getCount() function (lines 8,9,14,16) returns how many
times the given type of relation appears between two given entities.
It returns constant 1 for such relations as containment, declaration,
etc., while for the relations, such as field read/write, method call,
class creation, class/interface usage, it retrieves the count aggre-
gated when extracting the corresponding facts.

The challenge is how to determine the similarity when both en-
tity sets e_of_r1 and e_of_r2 are empty (line 3), such as for example,
when the methods do not write any fields or make any outgoing
calls. It has been our experience that, in such cases, setting the
structure-similarity to be simply 0 or 1 is not desirable: lacking any
explicit evidence of similarity, assuming that the structure is com-
pletely the same or completely different skews the subsequent
result. Therefore, UMLDiff uses the nameSimilarity with an in-
creasing exponent, if there are no entities that have the given type
of relation with the two compared entities. The effect is dampened
as more empty sets are encountered. For example, suppose we
compare the structure-similarity of two methods in the order of
types of parameters, field reads, field writes, and so on (see line 4
of algorithm 3). The two compared methods declare no parameters
and access no fields. The algorithm 2 returns nameSimilarity1 for
comparing types of parameters, nameSimilarity2 for field reads,
nameSimilarity3 for field writes, and so on.
4.1.3 Overall similarity metric
Given two entities e1 and e2 of the same type, their similarity is
computed by algorithm 3. The algorithm 3 is used in identifyRe-
name and identifyMove for determining potential renamed and
moved entities. N is the number of different types of relations when
determining renamings or moves for a particular entity type as
defined in Table 2. UMLDiff uses a user-defined threshold value

57

(rename_threshold in algorithm 6 and move_threshold in algorithm
7) above which two entities can be considered as the “same” entity
renamed or moved. If, for a given entity in the “before” version,
there are several potential matches above the user-specified thresh-
old in the “after” version, the one with the highest similarity score
is chosen. The higher the threshold is, the stricter the similarity
requirement is. The smaller the threshold is, the riskier the renam-
ings and moves are.

double computeSimilarityMetric(e1, e2)
1. nameSimilarity=nameSimilarity(e1.name, e2.name);
2. int pow=0;
3. double metric=0.0;
4. for all relation_type as defined in Table 2
5. metric+=structureSimilarity(e1, e2, relation_type);
6. return (nameSimilarity+metric)/(nameSimilarity+N);

Algorithm 3. Computing similarity metric

4.2 The UMLDiff algorithm in detail
The UMLDiff algorithm is described in pseudocode in algorithm 4.
The results queue contains all processed entities; the match queue
contains the matching entities discovered at the current logical
level so far; the next queue contains the matching entities found so
far at the logical level below. This set of queues is designed to
handle cycles in the meta-model. For example, when a class has
nested classes, both the enclosing and the nested classes belong in
the same logical level (they are all classes) although the nested
classes are at a level below that of the enclosing class in the con-
tainment-spanning tree. Nested classes should be processed in the
same way as the enclosing class but differently from the fields and
methods of the enclosing class. Thus, the matching pairs of nested
classes of a class are added to the end of the match queue, while
the matching pairs of fields and methods of that class are added
into the next queue (see algorithm 5 and 6).

UMLDiff(vr1, vr2)
1. Queue next, match, results;
2. level=VIRTUAL_ROOT; next.add([vr1, vr2]);
3. while (next != null) {
4. match = next.duplicate(); next.clear();
5. while(match != null) {
6. Set s = match.pop(); temp_match.add(s);
7. HashMap[] c1 = s[1].getChildren();
8. HashMap[] c2 = s[2].getChildren();
9. identifyMatch(c1, c2, match, next); }
10. match.addAll(temp_match);
11. while(match != null) {
12. Set s = match.pop(); results.add(s);
13. HashMap[] c1 = s[1].getChildren();
14. HashMap[] c2 = s[2].getChildren();
15. if(!childrenMatchChecked(s[1],s[2]))
16. identifyMatch(c1, c2, match, next);
17. identifyRename(c1, c2, match, next); }
18. HashMap[] m1 = generateMoveCandidates(vr1, level);
19. HashMap[] m2 = generateMoveCandidates(vr2, level);
20. identifyMove(m1, m2, next);
21. level++ ; }
22. results.addAll(markAllUnmatchEntities(vr1, remove));
23. results.addAll(markAllUnmatchEntities(vr2, add));
24. diffAttributesAndDependencies(results);

Algorithm 4. UMLDiff

 The algorithm starts at the virtual roots of the two models un-
der comparison, vr1 and vr2; these two nodes are placed into the
next queue as the first pair of matched entities (line 2). First (lines
5-9), UMLDiff proceeds to identify all the same-name children of

the pairs of general-matched entities. In the next step (lines 11-17),
the pairs of general-matched entities are fetched from the match
queue and their children, with as yet-undetermined status, are re-
trieved (through getChildren()) and placed into two arrays of
HashMaps c1 and c2. The number and entry type of the HashMap
depends on the type of the parent entity, as described in Table 1.
The renamed entities in these two children sets are identified and
inserted as new pairs into the corresponding next or match queue
depending on their logical level. After identifying all matched and
renamed entities, all children of the current logical level entities,
with yet-undetermined status, are collected (lines 18,19) and placed
into two arrays of HashMaps m1 and m2, and they are considered as
move candidates.

After all pairs of matched, renamed and moved entities at this
logical level of the containment-spanning trees have been identi-
fied, the algorithm proceeds to the next logical level (line 21).

This process continues until the next queue is empty (line 3).
Finally, all unmatched entities contained in the spanning tree
rooted at vr1 are assumed to have been removed and all unmatched
entities in vr2 are assumed to have been added when system
evolves from vr1 to vr2 (lines 22,23). The results queue contains all
matched, renamed, moved, added and removed entities. The differ-
ences between their attributes and dependencies are then computed,
which will be discussed in section 4.3.3 and 4.3.4.

In the reminder of this section, we present the details for deter-
mining matched, renamed, and moved pairs of entities.
4.2.1 Determining matching
UMLDiff assumes that enough design entities remain the “same”
between two consecutive versions of the system, which serve as
the “landmarks” to determine renamed and moved pairs of entities.
By “same”, we mean that two corresponding entities of the same
UML type have the same names, although their children, attributes,
and dependencies with other entities may be different. Of course, a
developer can remove a design entity, and then add a new one of
the same type with the same name but different functionality.
However, this case should rather be a rare exception.

identifyMatch(set1, set2, match, next)
1. for all e1 of a particular entity type in set1 {
2. e2 = set2.search_entity(e1.name);
3. if(e2 != null)
4. if(e2.level==level) match.add([e1, e2]);
5. else next.add([e1, e2]); }

Algorithm 5. Matching the pair of same-name entities

Given a pair of general-matched entities s[1] and s[2], getChil-
dren() (lines 7,8,13,14 of algorithm 4) returns their corresponding
children with yet-undetermined status in the form of an array of
HashMaps. Each entry of HashMap is in the form of <name, en-
tity>, where entity is the child of the given parent and name is its
corresponding name as described in section 3. In algorithm 5, for a
given entity e1 of a particular type, search_entity() (hash search)
retrieves the same name entity e2 of the same entity type from set2.
Next, depending on the logical level of the new matched pair of
entities, it is added into the match or the next queue.
4.2.2 Determining renamings
UMLDiff attempts to identify these entities that have no same-
name counterpart in the same parent context as renamed entities.
To that end, algorithm 6 calls computeSimilarityMetric to examine
the similarity of the names of the two candidate entities and the
similarity of their relationships with other entities. This similarity-
ranking algorithm reports, given e1, the e2 with the highest similar-

58

ity score (above the user-defined threshold) as the entity renamed
from e1.

idenfityRename(set1, set2, match, next)
1. for all e1 of a particular entity type in set1 {
2. double highestmetric=0;
3. for all e2 of the same entity type in set2 {
4. double metric=computeSimilarityMetric(e1, e2);
5. if (metric > highestmetric)
6. highestmetric=metric; }
7. if (highestmetric>rename_threshold)
8. if (e2.level==level) match.add([e1, e2]);
9. else next.add([e1, e2]); }
Algorithm 6. Recovering the pair of renamed entities

UMLDiff only checks renamings within the context of two gen-
eral-matched entities, such as the renaming of a method within a
class. Identifying renamings between two arbitrary entities, such as
the case of method moved from one class to another and its identi-
fier subsequently renamed, would be computationally expensive. If
the developers use the versioning system in a principled manner,
such moves and renamings can be identified separately by UM-
LDiff.
4.2.3 Determining moves
Finally, UMLDiff proceeds to examine those entities that have not
yet been identified as matches or renamings and to consider
whether they may have been moved from one part of the system to
another. It collects, through generateMoveCandidate (lines 18,19
of algorithm 4), all the same-name status-undetermined entities of
the same type into an array of HashMaps and considers them as
potential move candidates. Each entry of the HashMap is in the
form of <name, Set>, where Set contains the entities of a particular
entity type that have the same name. For methods, we use their
identifiers instead of their full name (see section 3) to construct the
corresponding HashMap, which enables the identification of
change of “move a method and modify its parameter list at the
same time”. Again, the similarity metric is used to distinguish the
pairs of entities that have really been moved.

identifyMove(set1, set2, next)
1. for all entity_name of a particular entity type in set1 {
2. Set entity1set=set1.search_entity(entity_name);
3. Set entity2set=set2.search_entity(entity_name);
4. for all e1 in entity1set {
5. double highestmetric=0;
6. for all e2 in entity2set {
7. if(isGeneralMatch(e1.parent, e2.parent) continue;
8. double metric=computeSimilarityMetric(e1, e2);
9. if(metric > highestmetric)
10. highestmetric=metric; }
11. if(highestmetric>move_threshold) next.add([e1, e2]); }}

Algorithm 7. Recovering the pair of moved entities

4.3 A taxonomy of structural changes
UMLDiff reports the structural changes between two subsequent
versions of a software system in terms of changes to various types
of design entities, to their attributes and to the relations among
them. The structural changes are stored in the table status in the
form of <scategory, stype, prev, next>. scategory and stype repre-
sent different categories and types of structural changes as dis-
cussed below. prev and next are integer array containing the id of
entity, and if necessary, the id of the related entity and their attrib-
utes. For example, the tuple <read, match_up, [100, 150, 3], [400,
475, 5]> represents the change: field of id 100 is read by method of

id 150 in the original version; this relation also holds in the subse-
quent version with their counterparts, field of id 400 and method of
id 475. However, in the original version there are 3 instances of
this relation while in the subsequent version this number increases
to 5.
4.3.1 Changes to named entities and their children
All types of named design entities and their children can be added,
removed, matched, renamed and moved except for some special
cases discussed below.

UMLDiff does not consider the possibility of renamings and
moves of design entities from libraries. JDEvAn’s fact extractor
extracts “just enough” entities from the referred libraries; extract-
ing all the library entities would be impractical. Thus, UMLDiff
does not have all the facts to determine structural changes to enti-
ties in libraries. The matched, added, and removed status of library
entities indicates that they are still referred, newly referred, or no
more referred in the source code when the system design evolves.

Array types are compared based on only their names. They can
be matched, added, or removed.

The renamings of methods and constructors include changes of
their identifiers and/or modifications to their parameter list. UM-
LDiff does not handle changes of the type “move a method plus
change its identifier”, but it reports the changes of “move a method
plus change its parameter list” (see sections 4.2.2 and 4.2.3). Fur-
thermore, UMLDiff does not consider moves of constructors (it
makes no sense to do so).

Since abstract-class and interface methods (implicitly abstract)
do not have any field-reads/writes and outgoing-calls (although
they may have incoming-calls), it is really difficult and error-prone
to identify the renamings and moves of abstract methods. There-
fore, UMLDiff does not consider the moves of abstract methods,
while it identifies their renamings by checking if their correspond-
ing implementation methods are identified as renamings.

In the case of regular Java software systems, the moves of
packages do not make sense and UMLDiff does not consider these
changes. However, for the case of systems that consist of a set of
subprojects, such as a set of related plugins within the Eclipse plat-
form, it is straightforward to incorporate an additional subproject
layer between the virtual root and package layers in algorithm 4
and thus enable the identification of the moves of packages.

Finally, UMLDiff does not consider the moves of inner classes
and interfaces from their declaring types to packages, and vice
versa in its differencing process, which may result from such refac-
torings as converting member type to top level; such refactorings
can be easily identified with post-processing of the UMLDiff re-
sults by querying the pair of newly added top-level type and the
removed same-name member type that there exist fields and/or
methods moved between them.
4.3.2 Changes to anonymous entities
Initializers are compared based on only their names. They can be
matched, added, or removed.

Anonymous classes are a special type of nested classes. From
the perspective of design evolution, one single anonymous class
does not have too many effects on software design, since, accord-
ing to the Java specification, anonymous classes are mainly used to
avoid creating a bunch of simple subclasses or implementations of
interfaces. However, as a whole, they may be indicators of design-
style preferences and development habits. Since anonymous
classes are specified right along with the new (class instantiation),
in our meta-model anonymous classes are children of blocks. UM-
LDiff compares the anonymous classes of the corresponding blocks
when it computes the differences of class creation between them

59

(see next subsection). It reports quantitatively the changes of the
number of the supertypes of anonymous classes created within a
block instead of comparing individual pairs, which simplifies the
differencing process when there are a large amount of anonymous
classes.
4.3.3 Changes to the relations among entities
At the end of its differencing process (line 24 of algorithm 4),
UMLDiff examines the changes to the relations among design enti-
ties as discussed in this subsection.

Inheritance. UMLDiff examines the class-inheritance changes
between two general-matched classes, x and x’, and reports either
of the two results below (mutually exclusive):

match: extends general-matched superclasses, xsup and xsup’
change: otherwise
UMLDiff also examines interface-inheritance (not necessarily

direct) changes of two general-matched classes (interfaces), x and
x’, which are reported as:

add: newly implements (extends) the interface xsup’
remove: implements (extends) no more the interface xsup
match: implements (extends) general-matched interfaces, xsup
and xsup’
Usage. Entity-usage relations are field-read/write, method-

incoming/outgoing-call, class-creation, and class/interface-usage.
UMLDiff examines the usage (used-by) changes between two gen-
eral-matched entities, e1 and e1’ and reports them as:

add: newly uses (is used by) the entity e2’
remove: uses (is used by) no more the entity e2
match, match_up, match_down: uses (is used by) general
matched entities, e2 and e2’ with the same, increasing, decreas-
ing number of times.
Note that for anonymous classes, UMLDiff reports the differ-

ences of the creation of their supertypes instead of the anonymous
classes themselves.

Class and interface usage changes are computed at the end of
the UMLDiff process. Computing the changes of field accesses,
method calls, and class creations for all pairs of general-matched
fields or methods in a large software system during differencing
process is time-consuming. Therefore, we decided to enable the
developer to request this comparison on demand by requesting the
computation of the amount of changes of field accesses, method
calls, and class creations during examination of the change trees
(see section 5).

Field data type and method return type. Changes of data
type (return type) between two general-matched fields (methods), f
(m) and f’(m’), are also reported as either of the two alternatives
below:

match: has the general-matched data (return) type, dt and dt’
change: otherwise

4.3.4 Changes to the attributes of entities
Finally, the visibility changes between two general-matched enti-
ties are examined. UMLDiff reports the visibility changes as either
of the following:

up: changes access modifier to a less restrictive one
down: changes access modifier to a more restrictive one
match: the visibility stays the same

where the access modifiers can be private, default, protected, and
public, in the order of more to less restrictive.

Similarly, the changes of non-access modifiers’ between two
general-matched entities are examined and reported as follows:

add: the entity declares some new non-access modifiers
remove: the entity declare no more some non-access modifiers
match: the entity still declare some same modifiers as before

5 Visualization of structural changes
To enable an intuitive means of communicating all the design-
change facts produced by UMLDiff, we have developed the
change-tree visualization. There are two types of change trees:
inheritance and containment, which are essentially the same but
follow the inheritance- and containment- spanning tree of software
model respectively. Due to the space limitation, we show only the
containment change tree (Figure 1) from our Eclipse case study.

As an Eclipse plugin, JDEvAn reuses and extends the visualiza-
tion of Eclipse’s Java DOM model. Therefore, in change tree, con-
sistent with IDE’s convention, the different icons to the left of each
node represent the different object-oriented entities: package, class,
interface, field, and method/constructor. Their different colors
represent the entity’s visibility. The top-right adornment shows the
attributes of the entity, for example, abstract, constructor, static,
final, etc. The bottom-right adornment represents method override
or implementation. The only extension is the bottom-left adorn-
ment that represents the UMLDiff result of a particular entity: it can
be the plus sign for add, minus sign for remove, 01 for rename,
arrow with a minus sign for move out from source, arrow with a
plus sign for move into target.

Figure 1. The JDEvAn perspective in Eclipse: a change tree

Figure 1 shows the JDEvAn perspective within the Eclipse plat-
form, which displays the part of containment change tree between
version 2.1.3 and 3.0 of JDT-related plugins in our Eclipse case
study. As we can see, package org.eclipse.jdt.internal.ui.text.temp-
late.preferences is renamed; two classes, TemplateEngine and
TemplateProposal, are moved into newly added package org.ecli-
pse.jdt.internal.ui.text.template.contentassist from somewhere else
(if they are selected, their corresponding source counterparts will
be shown in status bar); For TemplateEngine, it implements no
interface in both version. Field fContextType changes its data type
from ContextType to TemplateContextType (if it is selected, the
information will be shown in status bar). Its constructor changes
the parameter type (see status bar). It reads no field and writes field
fContexType once in both versions; it does not instantiate any class,
while it calls isNotNull once in both versions and is called by the
constructors of four other classes in both versions and is no more
called by QuickTempalteProcessor() in version 3.0.

60

6 Evaluation
To date, we have conducted several case studies, analyzing the
evolution of Java software systems using UMLDiff. They include
several small student projects in a third-year software-engineering
course, Mathaino – a research project developed by a single devel-
oper using a refactoring-driven process, HTMLUnit – a unit testing
framework for web applications, JFreeChart – a medium size Java
library, and currently, a set of large scale Eclipse plugins (still in
process). In this section, we use the JFreeChart case study to
evaluate the correctness and robustness of UMLDiff, in terms of
precision and recall. Interesting readers are referred to our other
publications [23,24,25,26] for the detailed evaluation on design
evolution analysis and design mentoring (briefly discussed in sec-
tion 7).

We chose to evaluate the accuracy and robustness of UMLDiff
with JFreeChart because it is a substantial and realistic software
system and, at the same time, it is of a manageable size, possible to
inspect “manually” to establish the ground truth for the algorithm’s
results. JFreeChart has been developed for more than 4 years; there
were 31 major releases between the first version 0.5.6, released on
December 1 2000, and the last version 1.0.0, which was released
on November 29 2004. It had reached more than 800 classes in
some of its versions. We applied UMLDiff to pair-wise compare
the 31 releases of JFreeChart. A substantial number of changes,
with renamings and moves threshold set to 30%, were summarized
in Table 3. Its intensive and varied design-evolution history makes
JFreeChart an appropriate test-bed for the evaluation of UMLDiff.

Table 3. JFreeChart’s design changes at threshold 30%
Entity renaming 2181
Entity move 1027
Entity addition 17018
Entity removal 5802
Class inheritance change 185
Interface implementation change 1025
Class usage change 14558
Datatype change 710
Non-access modifier change 303
Visibility change 855

Before we go into the detailed discussion on the UMLDiff ef-
fectiveness, let us first report on some performance metrics on the
UMLDiff process. JDEvAn’s database (PostgreSQL 7.4.5) runs on
a linux workstation (the VMWare guest operating system), and its
front-end (an Eclipse plugin) runs on Windows XP Professional.
The machine is an Intel Centrino 1.6GHZ with 768M physical
memory.

The fact extraction process of JFreeChart’s 31 major releases
took about 2.5 hours. Computing the transitive closure on the con-
tainment hierarchy, inheritance hierarchy, field access/method call,
and class/interface usage took in total about 25 minutes. Table 4
summarizes the time cost of applying UMLDiff to subsequent sys-
tem versions. The average time required for UMLDiffing two sub-
sequent versions of JFreeChart system is about 10-12 minutes. For
those releases that have major changes, such as version 0.9.5, 0.9.9,
0.9.19, UMLDiff requires about 30-50 minutes; most of this time is
used to detect moves and renamings. UMLDiff deals with a very
large information database (227005 entities, 1451499 entity rela-
tions, and 6988582 transitive-closure facts). Therefore, if major
changes were made between two compared versions, to determine
potential moves and renamings, UMLDiff has to query the database

for retrieving their corresponding relationships and previously
established matched pairs of entities, which is a time-consuming
process.

Table 4. The time cost of UMLDiff
Compared versions Time(mins)
0.5.6 −, 0.7.0 − 0.6.0, 0.7.2 − 0.7.1, 0.7.3 − 0.7.2,
0.7.4 − 0.7.3, 0.8.0 − 0.7.4, 0.9.1 − 0.9.0, 0.9.6 −
0.9.5

<1

0.6.0 − 0.5.6, 0.7.1 − 0.7.0 2
0.9.0 − 0.8.0，0.9.2 − 0.9.1, 0.9.3 − 0.9.2,
0.9.8 − 0.9.7, 0.9.11 − 0.9.10,

4 ~ 6

0.9.7 − 0.9.6, 0.9.15 − 0.9.14, 0.9.16 − 0.9.15 8 ~ 10
0.9.4 − 0.9.3, 0.9.12 − 0.9.11, 0.9.13 − 0.9.12,
0.9.18 − 0.9.17, 0.9.20 − 0.9.19

11 ~ 14

0.9.14 − 0.9.13, 0.9.21 − 0.9.20, 1.0.0 − 0.9.21 16 ~ 20
0.9.5 − 0.9.4, 0.9.10 − 0.9.9 23 ~ 25
0.9.9 − 0.9.8 37
0.9.17 − 0.9.16 52
0.9.19 − 0.9.18 58
Total ~370

Once all pairs of successive versions are UMLDiffed, all struc-
tural changes discovered are stored in JDEvAn’s database. We
manually inspected the correctness of each instance against the
JFreeChart source code, the accompanying Javadocs and source-
code comments, and a textual change log shipped with each major
release version. See table 5 and 6 for details on precision.

Recall is harder to assess since it requires knowledge of the to-
tal number of modifications of each type that have actually oc-
curred. To develop an intuition about how good the UMLDiff recall
is, we first run UMLDiff with a very low threshold for renamings,
i.e., 1%. With such a low threshold, UMLDiff is very eager to rec-
ognize entities as renamed and thus we expected to collect all in-
stances of renamings to use as the “actually renamed entity set” to
assess renaming recalls in other configurations. With the renaming
threshold set at 1%, UMLDiff reports 2945 instances of renamed
entities; after inspecting each one of them, we established that
2154 are correctly identified. At 30% renaming threshold, UM-
LDiff reports 2077 correct renaming instances, i.e. adding up the
number of correct instances of renaming package, renaming class
and interface, and renaming field and method. This implies that at
30% threshold, the renaming recall is 2077/2154 (96.4%). What is
also interesting to note, is that, even at this extremely low renam-
ing threshold, the UMLDiff renaming precision is 2154/2945
(73.1%) is not too low. This robustness is due to UMLDiff’s simi-
larity-ranking mechanism.

Next, we set the renaming threshold at 100% and the move
threshold at 1%. Given this very strict criterion for recognizing
renamings, only entities in the “same” parent context that have the
exact same relationships with other known general-matched enti-
ties are identified as renamed. All other yet-unmatched entities are
examined against other yet-unmatched entities in other parent enti-
ties: given the very low move threshold, UMLDiff is eager to rec-
ognize moved entities, based on even the most tenuous structure
similarity results. UMLDiff reports 1521 instances of moves, of
which 964 are correct. Therefore the moves recall at the 30%
threshold is 936/964 (97.1%). Since UMLDiff does not consider the
changes of “move an entity as well as rename its identifier” and
“move member type to package, and vice versa”, the real move
recall should be slightly lower than 97.1%.

61

Furthermore, we also evaluated qualitatively the UMLDiff re-
call against the CVS logs and release notes. With respect to the
changes that the developers themselves felt interesting enough to
document, over 95% of the changes recorded in these documents
can be recovered by UMLDiff along with a detailed context.

6.1 UMLDiff correctness
Even though the precision and recall rates are quite good, it is in-
teresting to understand “when UMLDiff gets confused”; let us,
therefore, review the cases of erroneously reported changes. Table
5 shows the UMLDiff results at threshold 30%: the third column
reports the number of changes of each type reported by UMLDiff
for JFreeChart, the number of correctly identified ones in the sec-
ond column and the precision in the fourth column.

Renamed class and interface: Seven out of 128 class/interface
renamings are incorrect. Two involve pairs of JUnit test classes
and five involve demo classes. All mistakenly recognized pairs of
classes are very similar: the JUnit classes share methods such as
suite(), testEqual(), testCloning() and testSerialization() and the
demo classes have methods like main(), createChart(), and create-
Dataset(). Moreover, the efferent relations of these class pairs are
also similar. For example, the suite() methods of the JUnit test
classes create an instance of TestSuite with parameter Test-
Class.class and their testSerialization() methods use the ByteAr-
rayOutputStream, ObjectOutputSteam, ObjectOutput classes. Fi-
nally, none of these classes have any afferent relations: the JUnit
classes are launched by the JUnit framework, and the demo classes
are stand-alone Java applications.

Table 5. UMLDiff results at threshold 30%
Type of change #Correct #Reported Precision
Renamed package 29 29 100%
Renamed class/interface 121 128 94.5%
Moved class/interface 306 306 100%
Renamed field/method 1927 2024 95.2%
Moved field/method 630 721 87.3%
Data type and return type 677 710 95.4%
Visibility modifier 845 855 98.8%
Non-visibility modifier 299 303 98.7%
Class inheritance 180 185 97.3%
Interface inheritance 970 1025 94.6%
Total 5894 6286 95.2%

Moved class and interface: All reported instances are correct
but a few instances are missed. For example, in version 0.9.5, the
interface CategoryItemRenderer was moved from package
com.jrefinery.chart to com.jrefinery.chart.renderer. At the same
time, 11 new methods were added to its original 10 methods,
which also changed signatures. Furthermore, out of nine classes
that use this interface in both versions, only 3 pairs of them were
matched. This dramatic change make the moving of interface
CategoryItemRenderer not recognizable by UMLDiff at threshold
30%.

Renamed field and method: 97 out of 2024 field and method
renamings are not correct. Most of them involve get and set meth-
ods and the fields they access. These methods are simple and short,
with few relationships to other entities and present a challenge to
UMLDiff’s structure-similarity heuristic. It is important to note
here that among the 1927 correctly identified field and method
renamings, there exist renamings that had no identifier similarity at
all, and therefore would not have been intuitively recognized by a
developer: for example, the CategoryPlot.getDataArea() is cor-

rectly identified as renamed to CategoryPlot.calculateAxisSpace()
in version 0.9.10.

Moved field and method: The precision of recognizing moved
fields and methods (87.3%) is worse than that (95.2%) of renamed
fields and methods. But its recall is better than that of renamings.
For example, in version 1.0.0, a superclass AbstractPieItemLabel-
Generator was extracted from class StandardPieItemLabelGenera-
tor, and 6 (all possible moves) fields and methods were reported as
having moved from the subclass to the new superclass. But it does
not correspond to the intuition of considering StandardPieItemLa-
belGenerator.createItemArray() as being moved to the newly added
class StandardXYSeriesLabelGenerator, as reported by UMLDiff.
The low precision is probably due to the fact that the potential
renaming candidates are limited to yet-unmatched children of the
given pair of general-matched parent entities, while all pairs of yet-
unmatched children of the same type with the same identifier of all
the entities at the whole logical level are considered as candidates
for potential moves, which increases the difficulty for determining
moves. We tried to incorporate parent-name-similarity and parent-
usage-similarity when computing structure-similarity for moving
fields and methods, which to some extent improves the precision.

Other errors: The accuracy of the reported changes to data
types and return types, modifiers, visibility, and class inheritance
and interface inheritance is relatively higher than that of renamings
and moves. The occasional errors are due (a) to erroneously identi-
fied renamed and/or moved entities or (b) missed renamings and/or
moves or (c) combined moves and identifier-renamings. If two
entities are mistakenly identified as renamed or moved, their dif-
ferent data types, modifiers, class and interface inheritance will
also be reported as changed. On the other hand, if a renaming or
move is missed, the entities referring to the renamed/moved entity
will mistakenly be reported as changed. For example, the interface
CategoryItemRenderer was not identified as having moved to the
new package com.jrefinery.chart.renderer in version 0.9.5, and,
consequently, the type of field renderer and method getRenderer()
of class CategoryPlot were identified as changed. In addition, the
interface implementation of 15 renderer classes that implemented
the CategoryItemRenderer interface were also identified as
changed. Finally, since UMLDiff does not attempt to identify cases
of combined identifier-renamings and moves, if a class was re-
named and then moved, such as for example, CrosshairInfo in
package com.jrefinery.chart in version 0.9.16 and CrosshairState in
com.jrefinery.chart.plot in version 0.9.17, they will be treated as
removed and newly added entities (but can be easily recovered
through querying the pair of die-hard and legacy classes [23]),
which might also result in the wrong data type, and inheritance and
implementation changes being identified.

6.2 UMLDiff robustness
Let us now discuss how the quality of the structural changes re-
ported by UMLDiff is impacted by the user-defined renaming and
move thresholds, and the style of CVS usage by the development
team.

Renaming and move threshold: To understand how sensitive
UMLDiff is to the choice of the “right” renaming and move thresh-
old, we experimented with a few different thresholds. Table 6 pre-
sents the UMLDiff results at renaming and move threshold 35%.
Compared with the results at threshold 30%, six less instances of
renamed classes and interfaces are reported: four of them are actual
class renamings that are not recognized at threshold 35%, while the
other two are incorrect instances reported at 30% but correctly
ignored at threshold 35%.

62

Table 6. UMLDiff results at threshold 35%
Type of change #Correct #Reported Precision
Renamed package 29 29 100%
Renamed class/interface 117 122 95.1%
Moved class/interface 303 303 100%
Renamed field/method 1888 1945 97.9%
Moved field/method 608+14 686+14 88.6%
Data type and return type 662 682 97.1%
Visibility modifier 836 841 99.4%
Non-visibility modifier 295 296 99.7%
Class inheritance 178 186 95.7%
Interface inheritance 962 1025 93.7%
Total 5877 6129 95.8%

UMLDiff misses the moves of three classes at 35%, Categor-
yAxis, CategoryPlotConstants, and AbstractRenderer into the cor-
responding new package in version 0.9.5. For renamed field and
method, 79 less instances were reported. 29 of them are incorrect
instances being filtered out at threshold 35%, while 40 are actual
renamings missed at 35%. The other 10 instances are the results of
4 missed class renamings, also incorrectly ignored at this threshold.

22 correct instances of moved fields and methods are missed at
threshold 35%, while 14 fields and methods of missed pairs of
renamed and moved classes are identified as moves. The precision
of renamings and moves at threshold 35% are slightly better than
that of threshold 30%, but as expected, the recalls are slightly
lower, 94.5% for renamings and 94.6% for moves. Most of disap-
peared instances for visibility and modifier changes are incorrect
instances, and thus they get relative bigger increases in precision.
Because there are 7 actual class and interface renamings and moves
are not recognized by UMLDiff at 35%, entities that refer to these
classes and interfaces are considered to be changed. This directly
results in the slight decrease of precision of changes to class and
interface inheritance.

Regularity of CVS usage: We also examined the changes that
UMLDiff reported when comparing major releases and the changes
it reported when comparing intermediate versions in order to assess
the impact of not having regular and frequent CVS updates. To that
end, we examined the release versions documented with the major
API changes, such as version 0.8.0 and 0.9.0, or those of lower
precision, such as 0.9.16 and 0.9.17.

For example, the class CombinedXYPlot in version 0.9.0 was
identified by UMLDiff as a renaming of class CombinedPlot in
version 0.8.0. In fact, the CombinedPlot was renamed MultiXYPlot
on April 23, 2002 and subsequently it was renamed again Com-
binedXYPlot on May 23, 2002 just before release 0.9.0. Clearly,
when UMLDiff only compares the two major releases - 0.8.0 on
March 22, 2002 and 0.9.0 on June 7, 2002 - the intermediate re-
naming is missed. In general, the smaller the distance between two
compared versions, the higher the detail of the report is likely to be.

As another example, the precision of reported renamings be-
tween version 0.9.16 and 0.9.17 is about 90.6%, which is worse
than the overall precision 95.2%. 15 of 159 reported renamings are
incorrect, among which six are related to renaming fields and
methods ?ItemLabelGenerator of class AbstractCategoryItemRen-
der and interface CategoryItemRenderer to ?ToolTipGenerator,
which did not reflect what changes were really made, since by
checking the source code we know that they were actually renamed
to ?LabelGenerator. This low precision led us to further investigate
the intermediate changes by taking the weekly snapshots between
two major releases 0.9.16 and 0.9.17, which resulted in 12 snap-
shots from January 9, 2004 to March 26, 2004. UMLDiff was ap-

plied to these 12 weekly snapshots, which produced more accurate
results. Five of six wrong instances were corrected, except for
baseItemLabelGenerator of AbstractCategoryItemRenderer being
still identified as renamed to baseToolTipGenerator.

Clearly, the quality of UMLDiff results is affected by the fre-
quency of saving changes back to versioning system and the time
duration between two compared versions. In general, UMLDiff will
produce better and more accurate results if the changes are prop-
erly saved in time and the short time period is used between two
compared system versions. In the case of UMLDiffing major re-
leases of JFreeChart, it produces results of both good precision and
good recall within threshold 30% and 40%. A threshold higher
than 40%, especially 50%, produces results with tenuous precision
improvement but at a significant cost of recall, while a threshold
below 30% produces results with slightly better recall but much
worse precision.

7 UMLDiff applications
Having evaluated the quality and robustness of UMLDiff, the next
question we would like to address is “what is this good for?” In
this section we briefly discuss three applications based on UMLDiff.
These applications are currently under development – to a different
degree of maturity – in JDEvAn, the tool that also implements
UMLDiff.

7.1 Design-evolution patterns and analyses
Important design decisions are reflected in the source code and in
the way the code has changed over time; such decisions can be
recognized from their effects, i.e., the design-level structural
changes reported by UMLDiff. We have developed a suite of auto-
mated analyses, based on the structural changes produced by UM-
LDiff, to study the design evolution of object-oriented systems
from multiple perspectives [23,24,26].

First, based on the elementary structural changes produced by
UMLDiff, we have defined queries to elicit more complicated
structural change patterns, such as refactorings [7]. For example,
an instance of the “Extract Superclass” refactoring can be recog-
nized through a query looking for a set of related changes: (a) the
addition of a new class, (b) the modification of one or more classes
from extending other class, such as java.lang.Object to extending
the newly added class, and (c) the moving of one or more fields and
methods from these existing classes to their new superclass.

In addition to refactorings, JDEvAn is able to discern any gen-
eral structural change patterns of interest to the user, such as for
example, a large amount of classes start implementing a particular
interface. These patterns represent project-specific evolution
knowledge. More often than not, they are not recorded in the de-
velopment log; they usually just exist in the developers’ minds, as
part of their development experience. JDEvAn is able to recover
them and present them to developers as a set of contextual advices
[26], which may be valuable to guide future development and
maintenance activities.

For an evolving software system with N successive versions,
UMLDiff can be applied N times to generate the differences be-
tween the (I+1)th and Ith versions, where 0≤ I <N (supposing there
is a virtual version 0 with no entities), resulting in a sequence of N
change trees that records the structural modifications of the logical
design of the subject system over time. This change-tree sequence
provides an audit trail of the design-level structural evolution that
the system and its components have suffered throughout their life-
cycle. This trail is analyzed to produce a system-evolution profile
and a class-evolution profile for each individual system class and
interface, which are then analyzed to discern distinct system and

63

class evolution phases and styles and the sets of co-evolving
classes [23,24].

7.2 Design mentoring
Software design is hard to learn because there are few “cut and
dried” rules for determining what is correct or what needs to be
improved and its application is contextual. Practical experience of
designing software is essential in becoming an expert in this activ-
ity. Today, software is often developed using an evolutionary proc-
ess. On one hand, this makes the design task harder since it re-
quires evolving an existing software in a manner consistent with its
design history; on the other hand, the software itself embodies
examples of high-level object-oriented design principles, design
patterns, refactorings, which the designers may study to acquire
valuable design experiences.

In [25], we proposed some preliminary work about “mentoring”
designers based on the analyses of design evolution patterns. In our
recent work [26], we illustrated, through a real world case study,
the JDEvAn’s capability to offer, based on capturing and analyzing
the instances of recurring design evolution patterns, advice regard-
ing potential modifications that may improve the system design.
The advice is grounded in JDEvAn’s knowledge of object-oriented
design principles, design and refactoring patterns and programming
hints previously adopted by the system under inspection.

7.3 Catching-up with evolving APIs
Software reuse, of frameworks and/or libraries, is a common prac-
tice today. To some extent, it simplifies the design of new systems
but, at the same time, it makes them heavily dependent on the com-
ponents they reuse. Ideally, the reused components’ APIs would
not change. In practice, however, as shown in Table 3, new com-
ponents’ versions do change their APIs, which imply a need for the
systems that use them to adapt. Migrating an application to the new
APIs is tedious and disruptive work. CatchUp [9] is an attempt to
relieve this burden by recording the refactorings, such as method
renamings, made by the library developers within an IDE, such as
Eclipse, and then replaying them by the application developers on
the library client code to keep it updated. But such a tool is limited
to the subset of refactorings supported by a particular IDE, and
more important, it requires the library developers explicitly use the
tool to record changes and ship them with the new versions of li-
brary.

In the absence of such a general tool, the application developers
have to resort to studying the available documentation, such as
change logs and release notes, which likely contains only a subset
of the actual APIs changes (what the library developers considered
important). For example, by checking the Eclipse help system, the
documents “Incompatibilities between Eclipse 2.1 and 3.0” and
“Adopting 3.0 mechanisms and API”, we found about 120 changes
regarding the incompatible APIs. However, by UMLDiffing ver-
sions 2.1 and 3.0 of one of Eclipse plugins, org.eclipse.jdt.ui (con-
tains about 1/6-1/7 classes of the whole Eclipse), we found 30
class/interface renamings and 12 class/interface moves, about 750
public field and method renamings, moves, and data type changes,
309 inheritance changes, and 302 visibility changes from or to
public. Clearly, there are many more changes than the ones docu-
mented! UMLDiffing the old and new versions of a framework or
library can serve as a good source of information for the applica-
tion developers migrating an application to the new APIs.

8 Conclusions
In this paper, we described UMLDiff, an object-oriented design-
structure differencing algorithm. This algorithm exhibits several

advantages over the current state of the art. Because it compares
software versions at the design level, its results are more directly
relevant to the evolutionary-development process than either lexi-
cal differencing or metrics differencing. Because it is aware of the
domain-specific semantics, its results are more intuitive than gen-
eral structure differencing algorithms. Because it is automated, it
does not rely on subjective interpretation as do visualization ap-
proaches and it can provide the basis for a variety of subsequent
analyses.

Our evaluation of UMLDiff has shown that it is sensitive to ir-
regular CVS usage but has high precision and recall when CVS is
used regularly and is fairly robust to the user’s choice of parame-
ters. Finally, UMLDiff can provide support for various design-
evolution activities in the context of evolutionary software devel-
opment.

Future work on UMLDiff includes investigating the combina-
tion of different factors that affect the UMLDiff and coming up
with the clue on deciding the appropriate set of relations and
thresholds for renamings and moves in the context of the subject
software project.

References
1. T. Apiwattanapong, A. Orso and M.J. Harrold. A differencing

algorithm for object-oriented programs. Proceedings of the
19th International Conference on Automated Software Engi-
neering, pp. 2-13, 2004.

2. S. Demeyer, S. Ducasse and O. Nierstrasz. Finding refactor-
ings via change metrics. ACM SIGPLAN notices, 2000,
35(10):166-177.

3. A. Egyed. Scalable consistency checking between diagrams -
The VIEWINTEGRA Approach. Proceedings of the 16th Interna-
tional Conference on Automated Software Engineering, 2001.

4. S.G. Eick, J.L. Steffen and E.E. Sumner. SeeSoft—A tool for
visualizing line-oriented software statistics. IEEE Transac-
tions on Software Engineering, 1992, 18(11):957–968.

5. S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron and A.
Mockus. Does code decay? Assessing the evidence from
change management data. IEEE Transactions on Software
Engineering, 2001, 27(1):1–12.

6. M. Fischer, M. Pinzger and H. Gall. Populating a release his-
tory database from version control and bug tracking systems.
Proceedings of the 19th International Conference on Software
Maintenance, pp. 23-32, September 2003.

7. M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

8. M. Godfrey and L. Zou. Using origin analysis to detect merg-
ing and splitting of source code entities. IEEE Transactions
on Software Engineering, 2005, 31(2):166-181.

9. J. Henkel and A. Diwan. CatchUp! Capturing and replaying
refactorings to support API evolution. Proceedings of the 27th
International Conference on Software Engineering, pp. 274-
283, 2005.

10. S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. Proceedings of the ACM
SIGPLAN’90 Conference on Programming Language Design
and Implementation, pp. 234-246, June 1990.

11. D. Jackson and D.A. Ladd. Semantic diff: A tool for summa-
rizing the effects of modifications. Proceedings of 9th Interna-

64

tional Conference on Software Maintenance, pp. 243-252,
September 1994.

12. P. Kruchten, “The 4+1 View Model of Architecture”, IEEE
Software, 1995, 12(6):42-50.

13. M. Lanza. The evolution matrix: Recovering software evolu-
tion using software visualization techniques. Proceedings of
the 4th International Workshop on Principles of Software Evo-
lution, pp. 37-42, 2001.

14. M.M. Lehman and L.A. Belady. Program evolution-processes
of software change. Academic Press, London, 1985, 538pps.

15. OMG Unified Modeling Language Specification, formal/03-
03-01, Version 1.5, (2003), http://www.omg.org.

16. D. Ohst, M. Welle and U. Kelter. Difference tools for analysis
and design documents. Proceedings of the 19th International
Conference on Software Maintenance, pp. 13-22, September
2003.

17. E. Ostertag, J. Hendler, R. Prieto-Daz and C. Braun. Comput-
ing similarity in a reuse library system: An AI-Based Ap-
proach. ACM Transactions of Software Engineering and
Methodology, 1992, 1(3):205--228.

18. B.G. Ryder and F. Tip. Change impact analysis for object-
oriented programs. Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pp. 46-53, 2001.

19. F.V. Rysselberghe and S. Demeyer. Reconstruction of suc-
cessful software evolution using clone detection. Proceedings
International Workshop on Principles of software Evolution,
pp. 126–130, September 2003.

20. K. Simon. An improved algorithm for transitive closure on
acyclic digraphs. Theoretical Computer Science 58, Automata,
Languages and Programming, 376-386, 1986.

21. G. Spanoudakis and H. Kim. Reconciliation of object interac-
tion models. Proceedings of the 7th International Conference
on Object Oriented Information Systems, pp. 47-58, August
2001.

22. Q. Tu and M.W. Godfrey, “An integrated approach for study-
ing architectural evolution”, Proceedings of the 10th Interna-
tional Workshop on Program Comprehension, pp. 127-136,
2002.

23. Z. Xing and E. Stroulia. Understanding class evolution in
object-oriented software. Proceedings of the 12th International
Workshop on Program Comprehension, pp. 34-43, June 2004.

24. Z. Xing and E. Stroulia. Understanding phases and styles of
object-oriented systems’ evolution. Proceedings of the 20th In-
ternational Conference on Software Maintenance, pp. 242-
251, 2004.

25. Z. Xing and E. Stroulia. Design mentoring based on design
evolution analysis. OOPSLA ETX Workshop, 2004.

26. Z. Xing and E. Stroulia. Towards Mentoring Object-Oriented
Evolutionary Development. Proceedings of the 21st Interna-
tional Conference on Software Maintenance, 2005.

27. A.M. Zaremski and J.M. Wing. Signature Matching: A Key to
Reuse. Proceedings of 1st ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 1993, pp. 182-190.

28. Eclipse, http://www.eclipse.org
29. Mosell EDM Ltd, http://www.deltaxml.com.

65

