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ABSTRACT
Nowadays, the development of modern computing devices involves
a substantial and growing part of software development. A great
challenge for engineers is to manage the evolution of a system with
several components in the face of mounting complexity due to con-
current hardware and software development. The key limitations
of existing version control tools used for a hardware software co-
design process include their inadequacy in representing semantics
of design models and inability to manage versions of both hardware
designs and associated software components in a cohesive manner.
Thus, it is difficult to track the logical interdependencies between
the changes to hardware and software components in an embedded
computing system over time.

This paper presents an application of a well-known software en-
gineering approach to the management of embedded systems de-
sign artifacts. Our novel component-based version management
mechanism is capable of capturing and versioning the underlying
logical contents of components in system design models and their
associated software artifacts in a cohesive manner. This paper also
illustrates our approach in creating a versioning system, named
EmVC, for a hardware software co-design process.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-aided design (CAD);
D.2.9 [Software Engineering]: Management

General Terms
Management

Keywords
Version Management, Hardware Software Co-design

1 Introduction
Embedded computing systems have been playing vital roles in the
information infrastructure of our society. They promise a great po-
tential for many critical applications, such as on-site processing
of sensor data, bio-security, monitoring of environmental changes,
non-destructive fault detecting, and security-enforced networking.
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A challenge during the design, development, and maintenance of
an embedded system, often called a hardware software co-design
process, is to maintain the productivity in the face of mounting
complexity due to concurrent hardware and software development.
Engineers have to produce a wide variety of artifacts that are con-
stantly in a state of evolution: user requirements are clarified; the
specification model for system level design is revised; high-level ar-
chitectural designs evolve; low-level hardware component designs
are changed; and software components are changed. One vital task
is to manage the evolution of this complex collection of interdepen-
dent artifacts so that the information can be quickly accessed and
consistently organized.

However, one of the biggest barriers is the poor interoperability
between specialized version control tools for different types of ar-
tifacts at different levels of abstraction. For example, in the current
practice of a hardware software co-design process, requirement and
analysis specifications are often produced using Office suites such
as Microsoft Word or Excel [21]. When a new version of a specifi-
cation is needed, an entire new document file is created. The only
way that engineers know about a new version is to look at the file’s
name or properties such as date of modification or timestamps.

For high-level architectural system design, they use specialized
environments such as Rational for UML diagrams [24], SCE [1]
for SpecC development methodology [10], or SyCE [6] for Sys-
temC design language. Version control capabilities of these envi-
ronments vary a lot. IBM Rational uses ClearCase [18] as its main
configuration management system (CM). However, ClearCase han-
dles diagrams at the text level, disregarding the logical contents of
design diagrams and specifications. In contrast, SCE focuses on
system modeling and provides no versioning support.

Low-level hardware designs are commonly managed by inte-
grated development environments such as the Xilinx XPS (Xilinx
Platform Studio) [32]. Software programming, hardware coding,
integrating, and debugging functionality are also provided. How-
ever, versioning support for hardware designs in those environ-
ments is limited to the use of version tags or model names for hard-
ware devices. The structures of devices in those designs are not ver-
sioned at all. Versioning support for software components is pro-
vided via external source code versioning tools such as CVS [22] or
Subversion [26]. Similar to other file-oriented CM tools, they have
no knowledge about the underlying semantics of software compo-
nents. At the board design level, layout designs are maintained
within CAD layout and routing tools with little version manage-
ment support.

The poor interoperability hinders the development by making
it difficult to determine whether artifacts semantically conform to
each other when they evolve. Modifications to artifacts are logi-
cally related to each other. Tracking of the interdependencies be-
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tween changes would greatly benefit developers in maintaining the
consistency between versions of hardware and software artifacts.

To improve the interoperability, unified versioning tools/methods
that are capable of handling both hardware designs and software
artifacts are required. Unfortunately, version management tech-
niques, tools, and methods used for each type of artifacts (hard-
ware designs and software components) cannot well carry over the
other [8, 9]. For instance, existing software configuration man-
agement (SCM) systems do not handle well designs of hardware
components. With text file-oriented SCM models, the only thing
known about the similarities and differences between versions of
design objects or diagrams is that their textual representation files
share a certain number of lines! It is largely up to developers to
derive the actual changes at the diagram level from those textual
differences. In the cases of parallel changes to the same file, SCM
systems provide the mechanism to branch and merge changes made
to unrelated lines of text. However, if textual merging is applied to
SpecC or UML design specifications, we might have a semantically
inconsistent resulting file.

In contrast, existing versioning approaches used in hardware de-
sign environments are not well-suited for software components,
source code, or documentation. Different versions of a design of a
hardware component are stored as individual entities in a database,
and version-related relations among components (e.g. predecessor-
successor and alternate-of) are represented as regular relationships
between component versions as in an object-relationship model.
Those approaches do not have an explicit storage representation for
internal changes between different versions of a component. The
changes between different versions must be computed by compar-
ing different object states. Thus, change management in those ap-
proaches is less efficient if applied to source code, documentation,
or software components.

While efforts to integrate versioning tools for hardware and soft-
ware components have had limited success [3], the main reason for
the poor interoperability problem is the lack of a unified CM model
that is able to support both hardware and software design and im-
plementation. The limitations of existing version control models
include their inadequacy in representing semantics of design mod-
els and inability to manage versions of both hardware designs and
associated software components in a tightly connected manner.

2 Component-based Approach
To address this version and configuration management problem
in a hardware software co-design and maintenance process, we
introduce a unified, component-based approach to configuration
management, in which all hardware design objects, source code,
and documentation are considered to be components. All com-
ponents (including hardware and software) and logical relations
among them are put under version control. Components are directly
accessible from the repository. Consistency of versions is main-
tained among components, rather than among files. The versioning
system is capable of capturing the logical structures of components
in designs and their hardware and software artifacts.

Our version management mechanism satisfies the following re-
quirements. Firstly, it is able to provide version control for any
structured components and the relationships among them because
components can be composite. Secondly, the mechanism has an ex-
plicit storage representation for changes between different compo-
nent versions. Each version is not stored as a whole entity as in ex-
isting versioning tools for hardware designs [9, 14, 30]. Thirdly, the
differences between versions are directly accessible in the repos-
itory, rather than to be computed using complex differencing al-
gorithms. Fourthly, the mechanism is able to support document-

centric artifacts such as programs and documentation files. Finally,
the states of a component including structure, content, and proper-
ties at different versions are easily constructed.

This paper contributes a novel component-based CM mechanism
with a graph-based version control framework that supports any
complex, nested, structured component of an embedded system.
With graph-based versioning scheme taking advantage of the Mol-
hado versioned data model and its associated repository [23], the
mechanism can support a wide range of hardware design and soft-
ware components produced during a hardware software co-design
process. Another significant contribution is EmVC, a novel CM
system for hardware software co-design process for embedded sys-
tems with SpecC development methodology and field programmable
gate array (FPGA) technology [10]. The distinguished feature of
that CM system is the cohesive versioning management among all
artifacts of a hardware software co-design process including re-
quirements, design documents, specifications, hardware designs,
and associated software components. All changes are integrally
captured and tightly related to each other in a cohesive manner.

Section 3 describes our graph-based representation model. Sec-
tion 4 explains how we provides fine-grained version control for
components. Section 5 presents our tool, EmVC, and explains how
hardware and software components are managed. Related work is
discussed in Section 6 and conclusions appear last.

3 Graph-based Representation
Instead of using ASCII texts as the representation for design ar-
tifacts and associated software components, EmVC uses a graph-
based representation. Graphs are commonly known, well under-
stood, have an established mathematical basis (i.e. graph theory),
and encompass a huge number of concepts, methods and algo-
rithms [20]. This makes them very interesting from a formal as well
as a practical point of view. Nodes can represent components and
edges can represent all kinds of relationships between components.
We use a special type of graph, called attributed, typed, nested, and
directed graphs to represent composite components. This type of
graph has a finite set of nodes, a finite set of edges, and two func-
tions: source and sink assigning exactly one source and target
node to each edge. We allow multi-graphs where different edges
can have exactly the same source and sink nodes. However, we do
not allow hyper-graphs, which contain hyper-edges that have more
than one source and target node.

A node in our model has a unique identifier. A node does not
have any value data. However, each node in a directed graph can
be associated with multiple attribute-value pairs. An attribute name
can be any string value and must be uniquely identified. The do-
main of attribute values can be any data type, possibly the reference
type. This typed attributes accommodate multiple properties asso-
ciated with nodes. Each edge in this type of graph can also be
associated with attribute-value pairs in the same manner as a node.
This association for edges encompasses the type of edges that have
associated edge labels.

We also allow a directed graph to be nested within another in
order to support composition and aggregation among components.
Nesting is a natural way for humans to control the complexity of
a system. In a nested graph, the overall complexity is reduced by
allowing nodes to contain entire graphs themselves. Nested graphs
are also referred to as hierarchical graphs [19]. The nesting struc-
ture must be acyclic. This constraint is needed to ensure that we
have a proper composition mechanism, i.e., a node cannot be con-
tained within itself. Using relation notation, (n, m) ∈ nested de-
notes that n is directly nested in m.

From the practical point of view, directed graphs are often used
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Figure 1: Data Model

as an underlying representation of arbitrarily complex software arti-
facts and their interrelationships in traditional software engineering
environments [19]. In other words, attributed, directed graphs are
sufficiently general to be used for a wide variety of components, de-
pending on the interpretation given to nodes and edges. The nesting
mechanism is attached to the graphs to facilitate the composition
and aggregation among components. The nested graphs also en-
able an encapsulation and layering mechanism to reduce the com-
plexity and to hide unimportant details of an artifact from others. It
is apparent that many forms of nesting occur in artifacts produced
during embedded system development. For example, in a hardware
design model, design schemas contain composite entities. In soft-
ware development, we can easily find nested methods, composite
classes, packages, modules, sub-modules, etc.

Furthermore, the popular Document Object Model [5] for XML
structured documents can be encoded via this attributed graph-based
representation since their trees form a sub-class of this type of
graph. Thus, many types of document-centric software artifacts
that can be represented in XML-compatible formats can be accom-
modated via this graph-based representation.

4 Fine-grained Version Control
The previous section presented our graph-based representation mo-
del for hardware design and software artifacts. Our goal is to pro-
vide structure-oriented version control supports for all types of com-
ponents in a hardware software co-design process. Therefore, a
fine-grained and structure-oriented version control scheme for that
type of directed graphs is required. This section presents such a
scheme.

4.1 Versioned Data Model
First of all, we would like to summarize our data model. Concep-
tually, there are three main concepts: node, slot, and attribute (see
Figure 1).

• Node is the basic unit of identity. A node has no values of its
own – it has only its unique identity. The unique identifier of
a node is immutable.

• A slot is a memory location that can store a value of any
primitive data type, possibly a reference to a node or a set of
slots. A slot can exist in isolation and can be versioned. A
slot may also exist in a container, an entity with identity and
ordered slots. A container may be heterogeneous (a record
in which each slot has its own type) or homogeneous (a se-
quence of slots of the same type). A sequence has identity
and may be fixed or variable in size. However, typically, a
slot is attached to nodes, using an attribute.

• An attribute is a mapping from nodes to slots. An attribute
may have particular slots for some nodes and map all other
nodes to a default slot. The slots of an attribute hold values
of the same data type.

In general, nodes, slots, and attributes that are related to each
other form attribute tables whose rows correspond to nodes and
columns correspond to attributes. The cells of the attribute tables
are slots. Nodes can be used to represent components. The unique
identifiers of nodes facilitate the history management of compo-
nents, especially when they are moved around in their composi-
tional hierarchies. Attributes and slots are used to represent object
properties.

Version control is added into the data model by a third dimension
in attribute tables. Technically, now there are three kinds of slots.
A constant slot is immutable; such a slot can only be given a value
once, when it is defined. A simple slot may be assigned even after it
has been defined. The third kind of slot is the versioned slot, which
may have different values in different versions (slot revisions).

The version model used in our framework (i.e. the version di-
mension) is Molhado product versioning model [23]. Molhado [23]
is a reusable and pluggable SCM infrastructure that was designed
for the rapid development of version management systems. In Mol-
hado, a version is global across entire product and is a point in a
tree-structured discrete time abstraction. That is, the third dimen-
sion in the attribute tables is tree-structured and versions move dis-
cretely from one point to another. The state of an entire product (in-
cluding its components) is captured at certain discrete time points
and only these captured versions can be retrieved in later sessions.
The version model is state-based, where each version is a first class
entity that represents a state of the product. A version can be as-
sociated with a name and meta-information such as date, time of
modification, authors, etc. The current version is the version des-
ignating the current state of the entire system. Any version may be
made current. When a version is set to be current, the state of the
whole system is set back to that version. Every time a versioned slot
is assigned a (different) value, a new version is created, branching
off the current version. Molhado uses techniques derived from the
work of Driscoll [7] et al. to store and retrieve the versioned data
in different primitive data types. No file versioning is involved.

4.2 Graph-based Versioning
This section describes the mechanism in EmVC for storing, retriev-
ing, and managing different versions of a software or hardware de-
sign component.

To support composite components, we have built a fine-grained
version control mechanism for attributed directed graphs. An at-
tributed, directed graph is flatten out as follows. An attribute ta-
ble is constructed to represent an attributed directed graph. The
attribute table representing for the entire graph has its rows corre-
sponding to nodes and its columns corresponding to attributes.

(a) Each graph node is represented by a node in the table. The
associated attribute-value pairs of a graph node could be easily
mapped into a row of the table: attribute values are realized as slots
associated with the corresponding node. The attributes in those
attribute-value pairs are added into the attribute set of that table.

(b) Each edge in the graph is also represented by a new node (i.e.
a new row) in the attribute table. The associated attribute-value
pairs of the edge are integrated into the attribute table as in (a).
Also, for the new node representing for the edge, two additional
attributes are defined: “sink” attribute defines the target node of the
edge, and “source” attribute defines the source node of the edge.

(c) For each node representing a graph node, an additional “chil-
dren” attribute contains references to outgoing edges of the node.
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Figure 2: Composite Component Representation

In our framework, a directed graph that contains other graphs
will have at least one node that logically contains another directed
graph. Let us call that type of directed graph “composite” graph
and that type of node “composite” node. As described, a directed
graph is used as the internal structure of a composite component.
To represent the composition, for a “composite” graph, an addi-
tional attribute, attribute “ref”, is created to define for each “com-
posite” node a slot containing a reference to the component that
corresponds to the subgraph nested at that “composite” node.

Figure 2 shows an example of the representation of an attributed,
typed, nested, and directed graph using our versioned data model.
There are two graphs in the figure: the directed graph correspond-
ing to the component A is nested within the directed graph cor-
responding to the component C via node 5. The attribute table
representing for component C is shown. Nodes “n1” to “n5” are
“node” nodes (i.e. representing for a graph node) while nodes “n6”
to “n10” are “edge” nodes (i.e. representing for an edge). Each
“edge” node has “source” and “sink” slots. For example, “edge”
node “n6” “connects” nodes “n1” and “n2”. Each “node” node has
a children slot. For example, “n2” has two outgoing edges (“n8”
and “n9”). Node 5 has no outgoing edge, thus, the “children” slot
of “n5” contains null. However, it is also a composite node, there-
fore, the “ref” slot of node 5 refers to the component A. Note that
a graph node inside A might have its “ref” slot referring to another
atomic or composite component. The attribute table for component
A is similar (not shown).

In our graph-based versioning framework, our library functions
for graphs and slots are called for the modification of the compo-
nents’ structures and properties. Those functions update the val-
ues of slots in attribute tables including structural slots (i.e. “chil-
dren”,“parent”, “source”, and “sink” slots).

Figure 3 displays a new version of C and A shown in Figure 2.
In the new version, the attribute table was updated by our library
functions to reflect the changes to the graph structure as well as to
the slot values. For example, since node 4 and edges correspond-
ing to “n9” and “n10” were removed, any request to attribute values
associated with those nodes will result in an undefined value. On
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Figure 3: Graph-based Version Control

the other hand, node 11 and two edges were inserted, thus, one
new “node” node (“n11”) and two new “edge” nodes (“n12” and
“n13”) were added into the table. Attribute values of these nodes
were updated to reflect new connections. Attribute values of ex-
isting nodes were also modified. For example, “children” slot of
“n3” now contains an additional child (“n12”), since that new edge
(“n12”) comes out of “n3”. The attribute table for component A
was similarly updated (not shown). Our storage mechanism han-
dles efficiently these three-dimensional attribute tables.

This fine-grained versioning scheme is very efficient since com-
mon structures are shared among versions and all information in-
cluding structures and contents are versioned via one mechanism.
Importantly, the scheme is general for any subgraph at a node.
Thus, fine-grained version control is achieved for any component
that is represented by a node.

5 Tool Development
Based on the aforementioned framework and models, we have built
an CM system, EmVC, for hardware software co-design process
for embedded systems with SpecC development methodology [10].
This section describes EmVC’s representation for different types
of SpecC components as well as for associated software artifacts.
Although no analysis tools for SpecC programs are currently pro-
vided, EmVC is used to illustrate our approach to provide version-
ing supports for embedded systems design artifacts.

5.1 Hardware Design Components
According to SpecC, the functionality of an embedded system is
captured as a hierarchical network of behaviors interconnected by
hierarchical channels. Specifically, a system can be described in
terms of behavior, port, channel, and interface [10]. A behavior
defines functionality of a hardware or software component. It can
be connected to other behaviors or channels through its ports. A
behavior can be composite if it contains child behaviors. The func-
tionality of a behavior is specified by a piece of SpecC code. A
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Figure 4: A SpecC “Behavior” Component

behavior is modeled as a composite component. Its connection to
another is represented by a directed edge in the directed graph rep-
resenting the connection structure among them. Versioned slots are
used to model other properties of a behavior. An atomic component
is created to model a port, which belongs to one behavior. Port type
is handled by a versioned slot.

A channel defines how the communication is performed. It cor-
responds to a set of SpecC variables and methods. It can be hierar-
chical and sub-channels are used to specify lower level communi-
cation. Similar to behaviors, a channel is encoded by a component.
Compositional structure of a channel is also represented as a tree or
a graph in a composite component. An interface represents a flexi-
ble link between behaviors and channels. It consists of declarations
of communication methods which are defined in a channel. Similar
to a port, an interface is modeled by an atomic component. Figure 4
shows an example of a behavior B consisting of two sub-behaviors
b1 and b2 which communicate via channels c1 and c2. Each behav-
ior has three own ports, and each channel has two own interfaces. B
is represented as a composite component whose internal structure
is modeled as a directed graph. The “ref” attribute associated with
each node contains a reference to the corresponding entities. E.g.,
for n1, the “ref” slot refers to the component “behavior b1”. The
behavior B itself can be involved in other composition hierarchies.

5.2 Software Components
In this sub-section, we explain our representation for source code
and document-centric artifacts. In EmVC, programs are modeled as
abstract syntax trees (ASTs), which are represented via our graph
representation. Similarly, documentation can be considered as tree-
structured documents as in XML or HTML files.

To provide the fine-grained version control for code, EmVC cap-
tures the semantics of a program with a component type named
CompilationUnit, which has a tree-based structure representing the
program’s AST. An AST node is represented as a node in the data
model. Remind that to model the parent node and children nodes
of an AST node, each node is associated with two attributes: “par-
ent” attribute defines for each node the parent node in the AST, and
“children” attribute defines a sequence of references to its children
nodes. In addition to those structural attributes, each node also has
an attribute (“NodeType” attribute) that identifies the syntactical
unit represented by that node. Figure 5 shows an example of piece
of SpecC code. EmVC’s parser is able to import SpecC text files
into its versioning repository’s representation.
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Figure 5: Representation for a SpecC program

A method is represented by a node associated with a “NodeType”
slot containing a method declaration, “MethodDecl”. The “Node-
Type” slots are enumeration values of predefined AST node types.
Furthermore, depending on the type of the AST node, the corre-
sponding node has additional attributes modeling different seman-
tic properties of the AST node. For example, for a “MethodDecl”
node, the following attributes are needed: “RetType” (the return
type of the method), “Name” (the method’s name), “Modifier” (a
string of modifiers of the method), “Parameters” (the method’s pa-
rameter list), and “SourceCode”. In Figure 5, not all attributes are
shown. If an attribute is not applicable to a node, an undef value is
used for the corresponding slot. If a node does not have a child, its
children slot contains a null value. The document tree for an XML
document is represented in a similar manner.

To represent the design of an embedded system, we introduce
the “product” entity. “Component” entity represents a hardware
or software component that belongs to a “product”. Technically,
a “product” is a named entity that represents the overall logical
structure of a product. In our framework, a “product” contains a
structure that is composed of components. The structure in a “prod-
uct” represents the overall architectural structure of an embedded
system. That structure is also implemented in the form of an at-
tributed, directed graph or an attributed tree as in a composite com-
ponent. The representation of a product is similar to a composite
component. However, the “product” can not be used as a compos-
ite component in any compositional hierarchy. It must be regarded
as the outermost composite components and sets up the context for
the global version space of the product versioning model. That is,
the scope of the current version is at the product level.

5.3 Logical Relation Management
Components in design models are logically related to each other
and to software components. They also have interdependencies
and connections with documentation and specifications. For ex-
ample, an item in a specification motivates a high-level design of
a sub-system. A SpecC channel corresponds to a set of variables
in a SpecC program. Maintaining these logical connections among
them during the hardware software co-design process is crucial for
developers in understanding the system’s evolution. To manage
logical relations, we use hypermedia structures in which a link is
represented as a first-class entity such as in XLink standard [33].
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The advantages of first-class hyperlinks have been acknowledged
by hypermedia research communities [33]. For example, they fa-
cilitate the process of browsing, visualizing, and analyzing of rela-
tionship networks among components in logical models.

We have built a hypermedia model that supports first-class hy-
permedia structures. Let us summarize its core concepts. In that
model, a hypertext network represents a network of relationships.
A hypertext network contains links and anchors. A link is n-ary
and connects a set of its anchors together. An anchor can belong
to multiple links. A link or an anchor can also belong to multiple
hypertext networks. An anchor does not belong to a component
as in HTML. It refers to a graph node within a component or to
entire component. To apply our versioning services to first-class
hypermedia structures, we also realized our hypermedia model via
the graph-based representation. In particular, a hypertext network
is implemented as a component, whose internal structure is a di-
rected graph. Each link or anchor is represented by a node in that
graph. A directed edge connects an anchor’s node to a link’s node
if the link contains the anchor. Attribute “ref” now is used to as-
sociate a slot to each anchor’s node in the graph. The slot holds a
reference to either a component or a graph node within a compo-
nent. That node (or that component) is considered to be the position
of the anchor. The use of anchors creates the separation between
relationship networks and component contents. In brief, a logical
relationship network is modeled and versioned according to the di-
rected graph based versioning scheme described earlier.

Figure 6 shows our representation using first-class hypermedia
structures for logical relationships between SpecC hardware design
components (e.g. channels, behaviors) and SpecC program entities
such as (variables, methods). Note that the logical relationships
are separated from the graph and tree representing for hardware
designs and software components. Changes over time to those re-
lationships are recorded according to the graph-based versioning
scheme described earlier. Details of consistency checking between
components are beyond the scope of this paper.

5.4 Differences between Versions
One of basic functionalities in an CM system is a differencing tool
which displays changes between different versions of an artifact.
There are several characteristics of our framework that make our
structural differencing tool simple, efficient, and accurate. The first

one is the unique identifiers of nodes and edges in directed graphs.
Second, the unique identifiers for nodes/edges are immutable. Third,
the actual development history is accessible since the graph and at-
tribute library functions will update values of slots whenever hard-
ware design objects or software documentation are modified in the
editors. Finally, we use the editors in which the operations will pre-
serve the identifiers of nodes/edges. Therefore, changes that were
actually performed from one version to another could be easily re-
constructed by pairwise comparisons of versions without dealing
with sequences of actual operations explicitly.

Figure 7 shows structural and logical changes between two ver-
sions v1 and v4 of a design for a FIFO Keypad Scanner. Icons that
are attached to graphical objects signify the nature of the changes.
For example, between v1 and v4, behavior “Decoder” was deleted
(“x” icon), behavior “Keypad” was inserted (“i” icon), and prop-
erties of “Hex Keypad Code Generator” were modified (a pencil
icon). With the structural difference tool for versions (see Figure 7),
users are able to see changes at the logical level, rather than at the
textual level as in conventional file-based versioning systems such
as CVS [22] or ClearCase [18]. Furthermore, the change manage-
ment in EmVC is more efficient in text-based SCM systems since
logical and structural changes are directly stored in the repository,
rather than being computed from textual changes.

Beside the structural differencing tool, another unique feature of
EmVC is the ability to manage versions of hardware designs, asso-
ciated software artifacts, documentation, and relationship networks
among them. Figure 8 displays a snapshot from EmVC, show-
ing a requirement specification, hardware design, and programs in
SpecC and C. The hyperlinks allow users to navigate among com-
ponents in different types of artifacts. Changes to hyperlink struc-
tures are also recorded.

Furthermore, all artifacts including designs, source code, and
documentation are versioned in a fine-grained manner, thus, fa-
cilitating the semantic checking among artifacts. With text-based
versioning systems, the semantic checking process is less efficient
since it has to analyze the files’ contents. In EmVC, versions of
logical components are directly captured in the repository.

6 Related Work
Researchers in the SCM area have acknowledged the importance of
version control at the component level, especially for architecture-
based software development [31] and component-based software
development [28]. In SCM-supported software architecture ap-
proach, design tools are aware of, depend on, and take advantages
of SCM systems. Ragnarok [2] manages architectural evolution of
a software system via a total versioning model. Ragnarok hides the
concrete level of actual file versioning supported by CVS [22], al-
lowing designers to work at the architecture level. SubCMTool [29]
provides version control for software sub-systems but lacks of sup-
ports for connectors and interfaces. The architecture-centered SCM
approach combines architectural and SCM concepts into a single,
unified system model, called architectural system model. Using
this approach, Mae [27] provides concepts of revisions, variants,
optionality, and inheritance. Menage [11] manages product line
architectures in terms of both time and space. To address space
variabilities, Menage supports the specification of all three kinds of
variation points defined by xADL 2.0 [4].

There are several approaches to managing software components
in component-based software development. Koala [28] supports
variability and optionality via a property mechanism. Koala does
not integrate versioning information into its representation. It uti-
lizes an external SCM system instead. Variability Categorization
and Classification Model (VCCM) [13] supports the variability in
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the software lifecycle and is used in a large-scale software product
family of MRI scanners at Philips Medical Systems. Crnkovic et
al [16, 17] introduced an SCM approach for components and rela-
tionships among them using dependency graphs. The dependency
graphs are used to facilitate maintenance by identifying differences
between configurations. Unicon [25] focuses on implementation-
level variability. Based on a property selection mechanism, each
component in a given architectural configuration is instantiated with
a particular variant implementation. However, it does not capture
architectural revisions and options. ShapeTool [15] does not pro-
vide mechanisms beyond grouping, versioning, and version selec-
tion. SOFA/DCUP [12] proposes a version model for components
employing user-defined attribute taxonomies and entity relations.

Although those component-based version and configuration man-
agement systems have interesting functionality, they are still lim-
ited to support only a fixed set of components for a particular do-
main. The key departure point of our approach from existing ones
is the ability to provide a unified CM model that is capable of sup-
porting both hardware designs and software artifacts produced dur-
ing the design of an embedded computing system. Also, no existing
tool for embedded systems designs can support version control in
the presence of hyperlinks connecting components together.

7 Conclusions
Nowadays, the development process of an embedded computing
system is more and more complex, and involves concurrent hard-
ware, software development. This places a new demand on an CM
approach that can support both hardware designs and associated
software components in a cohesive manner. This paper presents a
novel integrated version management mechanism and its applica-
tion to build an CM system, EmVC, that is capable of capturing
and versioning the underlying logical contents of components in
a hardware software co-design process. The mechanism is based
on a graph-based versioning framework that supports any complex,
nested, structured components that are involved in a hardware soft-
ware co-design. The dependencies, logical connections, and rela-
tionships among hardware design components and associated soft-
ware artifacts are also managed. Experimental studies on perfor-

mance of the tool are being conducted. More importantly, our flex-
ible CM mechanism can be easily used for building any versioning
systems for other embedded systems development methods.
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