The Molhado Hypertext Versioning System

Tien N. Nguyen
Dept. of EECS
Univ. of Wisconsin-Milwaukee

tien@cs.uwm.edu

ABSTRACT

This paper describes Molhado, a hypertext versioning and software
configuration management system that is distinguished from previ-
ous systems by its flexible product versioning and structural con-
figuration management model. The model enables a unified ver-
sioning framework for atomic and composite software artifacts,
and hypermedia structures among them in a fine-grained manner
at the logical level. Hypermedia structures are managed separately
from documents’ contents. Molhado explicitly represents hyper-
links, allowing them to be browsed, visualized, and systematically
analyzed. Molhado not only versions complex hypermedia struc-
tures (e.g., multi links), but also supports versioning of individual
hyperlinks. This paper focuses on Molhado’s hypertext versioning
and its use in the Software Concordance environment to manage
the evolution of a software project and hypermedia structures.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement;

D.2.9 [Software Engineering]: Management;

H.5.4 [Information Interfaces and Presentation]: Hypertext /
Hypermedia

General Terms
Management

Keywords

Hypertext Versioning, Software Configuration Management, Ver-
sion Control, Software Engineering

1. INTRODUCTION

One of the most important tasks associated with software en-
gineering is to improve the analysis, design, construction, verifi-
cation, and management of software artifacts. The software ar-
tifacts produced during the development process are often logi-
cally related to each other. The logical relationships appear in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HT’04, August 9-13, 2004, Santa Cruz, California, USA.

Copyright 2004 ACM 1-58113-848-2/04/0008 ...$5.00.

Ethan V. Munson
Dept. of EECS
Univ. of Wisconsin-Milwaukee

munson@cs.uwm.edu

185

John T. Boyland
Dept. of EECS
Univ. of Wisconsin-Milwaukee

boyland@cs.uwm.edu

many forms. They can be captured in the form of manually main-
tained cross-references, organizational indexes, or table of con-
tents. While composition relationships are used to organize soft-
ware components with respect to their granularity, build dependen-
cies specify dependencies between source objects and derived ob-
jects inabuild process. Semantic dependencies exist among source
code, requirements, designs, and implementations. Documents un-
der developments or maintenance are changed and updated to pro-
duce the next revision. Therefore, the set of active logical relation-
ships among them can also change over time as a result.

Acknowledging the importance of relationship management in
software engineering tools, many researchers have explored the hy-
pertext approach [5]. As discussed, hypertext supports for software
development must accommodate changes in both software artifacts
and relationships. Here, versioned hypermedia comes into play
as a natural means for representing and versioning software arti-
facts and their relationships. Versioned hypermedia (or hypertext
versioning) is concerned with storing, retrieving, and navigating
prior states of a hypertext, and with allowing groups of collaborat-
ing authors to develop new states over time [46]. Despite having
many successes, existing hypermedia-based software engineering
tools provided only limited support for the evolutionary aspects of
a software project, especially for maintenance and evolution of doc-
ument relationships. In the meantime, many existing hypertext ver-
sioning frameworks were not particularly designed for software de-
velopment. Applying hypertext versioning technology in software
engineering exposes certain requirements for which most existing
hypermedia-based software development tools have yet to provide
a complete solution.

First of all, the representation of hyperlinks must be explicit and
facilitating systematic analysis, information retrieval, and visual-
ization of document relationship networks. Implicit relationships
cannot be browsed, navigated, queried, or systematically analyzed.
Therefore, it hinders developers from having a full understanding
of the system and from discovering important information. Sec-
ondly, hyperlinks must have variable arity since it is common for
relationships to connect multiple documents. Document relation-
ships can exist both between documents and within a single docu-
ment. In software documents, which can be rather lengthy, it will
be common that relationships will connect relatively small sections
of material, such as functions, paragraphs, or subsections. So, a
hypermedia system needs to support both coarse-grained linking
(connecting entire documents) and fine-grained linking (connect-
ing document fragments). In addition, hypertext versioning sys-
tems designed for software engineering should separate hypertext
structures from document contents. This is particular important for
program source code, whose lexical and syntactic rules hinder the
use of embedded hyperlinks. The separation also gives developers

more flexibility to have different relationship networks to complete
particular tasks at hand without modifying software documents.

In hypertext authoring applications, versioning for links might
not be crucial. However, for software development, the ability to
track changes for a particular logical relationship is very useful, for
example, in consistency management tasks. The fact that existing
hypermedia systems for software development do not version links
is a significant factor preventing their wider use in the software en-
gineering domain [46]. In order to correctly maintain fine-grained
logical links, hypertext versioning systems must also version soft-
ware artifacts in a fine-grained manner at the logical level. This
ability is particularly useful in fine-grained traceability and change
tracking tools since file is a much larger piece than an informa-
tion unit affected by a single change. In addition, the history of
hypertext structures also needs to be recorded since it would help
engineers to understand better the development of software doc-
uments and logical relationships among them over time. An im-
portant user interface requirement is that versioning for hypertext
structures should occur as transparently to users as possible. The
versioning system should not constantly prompt users for checking
in and out the member entities of a hypertext structure every time a
new version of the structure is created. Beside these requirements,
general requirements for a hypertext versioning system such as the
ones listed by Haake [20] and by Whitehead [46] are also very im-
portant to the success of software relationship management.

To improve the relationship management in software engineering
tools, our research has built a hypertext versioning and configura-
tion management (SCM) system, named Molhado. Molhado dis-
tinguishes itself from existing systems by its hypertext versioning
framework in which hypermedia infrastructures are built based on a
product versioning and structural SCM model. Structure version-
ing in Molhado allows for fine-grained version control of logical
structure of software components, hypermedia structures among
them, and their logical organization within a software project. This
paper focuses only on Molhado’s versioned hypermedia and its use
in the Software Concordance (SC) to manage versions of software
artifacts and hypermedia structures.

2. RELATED WORK

Several researchers have applied hypertext technology to im-
prove software document and relationship management. Dynam-
icDesign [7] defines a fixed set of information units and relation-
ships in an integrated development environment (IDE) for C lan-
guage. ChyPro [2] is a hypermedia-based IDE for SmallTalk-80,
which allows for linking distant pieces of code or documentation
together. @sterbye supports literate programming [37] by model-
ing a SmallTalk system as a hypertext. The Chimera open hyper-
media system [3] improves relationship management by providing
hypermedia services across multiple document types maintained by
different applications. None of these hypertext-based systems ad-
dresses the issue of relationship evolution.

Hypertext versioning offers an appealing approach to represent-
ing the evolution of software documents and relationships. How-
ever to date, IDEs based on versioned hypermedia have only pro-
vided simple versioning of objects, with limited versioning of links.
Also, none supports interactive program analysis. Systems pro-
viding versioning only for data include Xanadu [33], KMS [1],
DIF [17], and Hyperform [48]. In both RCS-based Hyper\Web [16]
and HyperCASE [12], the smallest versionable information unit is
afile, which is too large to be a suitable basis for document relation-
ship management. HyperPro [36] supports versioning of objects as
small as procedures. NUCM [42] follows client-server SCM model
in which a NUCM client interacts with a NUCM repository server.

186

Palimpsest’s change-oriented model addresses concurrency control
in collaborative editing [15]. Vitali and Durand propose VTML
(versioned text markup language) [6] to express change operations
in editing structured documents including XML and HTML. To
support distributed authoring for Web contents, WebDAV [47] ex-
tends HTTP protocol to include operations for overwrite preven-
tion, properties, and namespace management, while DeltaV [47]
builds upon WebDAV to offer versioning, workspaces, activities,
and configuration management.

Prominent approaches in version control for hypertext structures
are composition model, total versioning model, and product ver-
sioning model. In composition model, versions of atomic compo-
nents are maintained and assembled into composite components.
Each of atomic components has a version history. The relation-
ships between these version histories are defined by revision selec-
tion rules (RSRs) for composing a version of a composite compo-
nent or a hypertext structure. Although the use of RSRs provides
flexibility, it creates some problems [4]. Efficiently maintaining
and evaluating rules increase the complexity of structure version-
ing and make user interfaces complicated [46]. The indirect rep-
resentation of a hypertext structure makes it impossible to find out
elements of the structure, unless the rules are actually applied and
executed. Differences between a structure’s revisions can not be
deduced from comparing RSR specifications. Therefore, change
management would not be efficient with this approach. To avoid
the use of rules, some systems maintain a notion of current con-
text [14, 20, 21]. A context could be some kind of coherent struc-
ture, for example, a document, a document collection [36], or a par-
tition of a hypertext [14]. However, the complexity of maintaining
the current context becomes significant if composite components
have many nested levels and hyperlinks among them.

The composition model is the core of many existing composite-
based hypertext versioning systems. Composite-based versioning
systems comprise an important class of hypertext versioning sys-
tems, and are characterized by the use of a container object to con-
tain documents and hypertext networks [46]. In Neptune [13], the
composite is used to represent the isolated work area of each col-
laborator. HyperPro [36] records changes for links by placing links
inside a “version group” (i.e., a composite) that is versioned. It has
both links to a specific version of a node and links to a node in
general. Similar to HyperPro, HyperProp [39] does not record his-
tory of links individually. In HyperPro’s and HyperProp’s structure
versioning, RSR is stored on the structure, affecting all link end-
points, and provides selection of specific document revision from
a versioned document. With this RSR approach, it is inefficient to
evaluate rules across the revisions of a specific link [46].

The research addressing versioning in open hypermedia systems
has also applied composition versioning approach. Microcosm [29]
has a context-like structure called the “application”, which is ver-
sioned. It uses RCS [41] to implement version control of nodes.
RHYTHM [28] is a distributed hypertext system that tackled prob-
lems arising from distribution and versioning. In the versioning
proposal for Chimera [45], a “configuration” is a named set of
versions of Chimera hypermedia elements, representing the sub-
set of a hypertext structure that might be affected by modifications
to an externally stored object. RCS is assumed to be the external
versioning system for objects. In the hypermedia version control
framework (HURL) [22], a hypertext structure is represented by an
“association”, which is a collection of identifiers of links and an-
chors, and documents that defines a connection. HURL provides
data versioning at document level. 1AM group has investigated the
Fundamental Open Hypermedia Model (FOHM) [31]’s contextual
model as implemented within the contextual structure server, Auld

Linky [30], to see if the contextual model could replace the se-
lection engine in a hypertext versioning server. They suggested to
extend FOHM to include multiple connections and “contexts” on
those connections [19]. The GAIA [23], a versioning framework
for open hypermedia, has its “composite” included links, anchors,
document, queries, other composites, graph objects, and a RSR.

In total versioning model, all items are versioned, including com-
posites and atomic components. Each item still has its own version
space. The relationships among items’ version spaces are defined
by RSRs or by versions of composites referring to versions of other
components. For example, in ClearCase [24], a directory version
refers to versions of other directories and files. The main princi-
ple is that when a component is modified to create a new version,
new versions of all components that are its ancestors in composi-
tional or relational hierarchy must be created [10]. In PCTE [44], a
new version is created by recursively copying the whole composi-
tion hierarchy and establishing successor relationships between all
components. In CoVer’s [20] and VerSE’s [21] structure version-
ing, RSR is stored on the containment arc between a container and
its containees, providing selection of link revisions and document
revisions from versioned links and versioned documents respec-
tively. This structure versioning increases the work that must be
performed to ensure that a structure container holds a consistent
hypertext [46]. In CoVer and VerSE, a context is a description of
the task being performed when the objects (involved in the task) are
versioned. Such context information is used in assisting with the
version selection process. SEPIA [40] has the notion of “compos-
ite node”, which contains a partially ordered set of nodes and links
and represents subgraphs of the hypermedia network. Its “container
object” contains view information for each data object (link,node,
composite node). The total versioning model also has the version
proliferation problem [10], which will be discussed later.

In contrast to total versioning, product versioning establishes a
total view of a software product, or even an entire database. This
is done by arranging versions of all items in a uniform, global
version space. Change-based product versioning systems include
COV [25], Aide-de-camp [11], and PIE [18]. PIE stores logical
changes in a composite called “layer”, which can contain both ob-
jects and links. Voodoo [38], a state-based product versioning SCM
system, also manages the evolution of the whole software project.
A version in Voodoo is a global discrete point in a time baseline,
rather than a point in a tree-structured discrete time abstraction as
in Molhado. Wagner’s product versioning [43] integrates version
management with incremental program analyses.

Much research has been performed to provide fine-grained ver-
sion control for software documents. Magnusson et al worked on
tree-based versioning for programs and hierarchically structured
documents to support collaborative editing in COOP/Orm [27]. The
framework’s principles include sharing of unchanged nodes among
versions, change propagation, and change-oriented representation
of differences. The framework works only on tree-based docu-
ments such as XML. POEM [26] uses total versioning to provide
version control in terms of functions and classes. The Unified Ex-
tensional Versioning Model [4] supports versioning for a tree by
composite, atomic, and link nodes. In Coven [9], the exact size
of versioned fragment depends on the supported document: entire
method, function, or field declaration for C++ and Java programs,
or paragraph of text in IATEX documents.

3. SYSTEM OVERVIEW

Our system is designed based on a layered architecture (see Fig-
ure 1). Each layer uses services of lower layers to provide the
infrastructures for upper layers. The important tasks and notions

187

hypertext hypermedia services: hypertext

K versioning networks, linkbase, link, anchor

2 9| configuration| project versioning, transaction

< —|management| supports: project, configuration
structural [structure versioning: tree, digraph
modeling |[component, composite, structural unit

primitive data and version model:

Fluid version layer
node, slot, attribute, versioned slot, ..

Figure 1: System overview

tree*structured discrete time
o Project v1.0

current => Project v2.0 } N

Project v3.0

Project v3.2

c1.2

Figure 2: Product versioning

introduced at each layer are listed in Figure 1. The Fluid layer
(Section 4) provides the product versioning engine for our system.
It is built as part of the Fluid project [8]. It provides a combination
of a version model and a primitive data model to allow for version
control of many different data types. Its persistence model allows
for the storage of versioned data. Since the Fluid model works
at primitive data, it is necessary to construct high-level versioning
infrastructures for different types of software artifacts and hyper-
media structures. That is the task of the Molhado’s structural mod-
eling layer (Section 5). While the structural modeling layer takes
care of components in individual, configuration management layer
(Section 6) applies structural modeling infrastructures to the logi-
cal and compositional organizations among software artifacts. This
layer’s responsibilities include supports for versioning a project’s
structure and for users’ operations. The hypertext versioning layer
(Section 7) is built based on structural modeling infrastructures.
Hypertext versioning services in Molhado have been integrated into
the Software Concordance environment (Section 8).

4. PRODUCT VERSIONING MODEL

This section describes the Fluid product versioning model. In-
stead of focusing on individual components, Fluid/Molhado ver-
sions a software project as a whole (see Figure 2). All system
objects including (atomic and composite) components and hyper-
text structures are versioned in a uniform, global version space. A
version is global across the whole project and is a point in a tree-
structured discrete time abstraction, rather than being a particular
state of a system object as in total versioning and composition ver-
sioning approaches [10]. The state of the whole software system
is captured at certain discrete time points and only these captured
versions can be retrieved in later sessions. The current version is
the version designating the current state of the project. When the

a) node b) attr 2
0.1 10.* node~| ' | 2
.1 attribute nl | V(n2) |V(seql)
0 * sI:> :)‘* % n2 | V(n1) | V(n1)
N0 T 0. seq1:sequence object
/H\ 6jsequence V(n1) V(n2)
. d Legend:
versione V(X): versioned slot with
slot current value x
1.1 simple slot —— contain by inclusion
' constant slot ----contain by reference
y1.*% = inheritance
slot revision n..m :cardinality

Figure 3: Node Slot Pattern

current version is set to a captured version, the state of the whole
project is set back to that version. Changes made to the project at
the current version create a temporary version, branching off the
current version. That temporary version will only be recorded if a
user explicitly requests that it be captured. To record the history of
an individual object, the whole project is captured. Capturing the
whole project is quite efficient because the versioning system only
records changes and works at a very small granularity.

The primitive data model of Fluid product versioning engine is
the node-slot pattern [8]. Figure 3a) summarizes the node-slot pat-
tern using the notation of Whitehead’s containment model [46]. A
node is the basic unit of identity and is used to represent anything.
Aslot is a location that can store a value in any data type, possibly
a reference to a node or a sequence (will be described later). A slot
can exist in isolation but more typically slots are attached to nodes,
using an attribute. An attribute is a mapping from nodes to slots.
An attribute may have particular slots for some nodes and maps all
other nodes to a default slot. The data model can thus be regarded
as an attribute table whose rows correspond to nodes and columns
correspond to attributes. The cells of the table are slots. Once we
add versioning, the table gets a third dimension: the version. There
are three kinds of slots. A constant slot is immutable; such a slot
can only be given a value once, when it is defined. A simple slot
may be assigned even after it has been defined. The third kind of
slot is the versioned slot, which may have different values in differ-
ent versions (slot revisions). A sequence is a container with slots
of the same data type. It has a unique identifier. Sequences may
be fixed or variable in size and share common slots together. Fig-
ure 3b) shows a simple example of an attribute table. The versioned
slot associated with node “nl1” via attribute “al” currently holds a
reference to the node “n2”. Sequence “seql” has two versioned
slots referring to “n1”” and “n2” respectively.

5. STRUCTURE VERSIONING

To be able to control versions of software documents at a fine
granularity and at the logical level, Molhado follows a structure-
oriented approach where each document is considered to be log-
ically structured into fine units, called structural units or logical
units. This approach is often taken in structured document research,
e.g. SGML and XML. In this approach, each software document is
represented by a document tree or a document graph in which each
node encodes a logical unit of the document. Since XML has be-
come the standard structured document format and very successful
in representing many different data types, it is very natural to use
XML for representing non-program artifacts. Syntactical rules for

188

growing versions

vi (1) vz (1) v3 M
ONE @ (2)

G‘S 9 *(modified) 9 9 @
"con)"child,) "con, "child "con "child ’)
tent’|ren" | Parent tent'|ren" [Parent” tent"|ren” |'parent

ni seql| null n1 seql| null n1 seg4 | null

n2| ™ |seq2| ni n2| "™ |seq3| n1 n2| ™ |seq5| n1
n3| " | null | n n3["™ | null | n1 n3 undefined

na| "™ | null | n2 n4| undefined n4| ™ |null | n2

n5|"old"| null | n2 n5 'new"l null | n2 n5["old" null | n2

n6| "™ | null | n2
seql seq2 seq3 seq4 seq5

2 3] [na [ns] [m5] [n2] [TaTns] ne]

note: sequence objects share common slots.

Figure4: Treeversioning

a document and its structural units are defined by users in a specifi-
cation such as a document type definition (DTD) or XSchema spec-
ification. For a program, an abstract syntax tree (AST) perfectly
represents its logical structure. To achieve fine-grained versioning
for documents, it is obviously that a versioning framework for tree
and graph data structures is required.

5.1 Tree-based versioning

This section describes the fine-grained version framework for the
tree data structure, which is built as part of the Fluid project [8].
Trees are built from nodes, slots, and attributes. A tree is defined
with two main attributes: 1) the “children” attribute maps each
node to a sequence holding its children, and 2) the “parent” at-
tribute maps each node to its parent. Figure 4 illustrates this via an
example. In this example, a “content” attribute is also defined that
holds a string value for some of the nodes. Note that other attributes
can also be defined for nodes. Assume that there are three versions:
v1, v2, and v3. Versions v2 and v3 branch off from version v1. The
shape of the tree at each of the three versions is shown. Version
v2 has two differences from the version v1: node 4 was deleted and
the content of node 5 was changed. Version v3 has an inserted node
(node 6) and node 3 was deleted. The values of versioned slots in
the attribute table are changed to reflect modifications to the tree at
these versions. For example, at the version v2, the “content” slot
(i.e. the slot defined by the attribute “content™) of node 5 contains
a new value (the string “new”), and the “children” slot of node 2
contains a reference to a new sequence object (seq3). Seq3 has
only one slot, which contains a reference to node 5 since node 4
has been deleted. If there is a request for the values of slots associ-
ated with node 4 at v2, a run-time error will be reported. Versioning
for a directed graph is similar except that the attribute table does not
have the “parent” attribute.

With this versioning scheme, the history of any node (logical
unit) can be recorded. For example, if the tree in Figure 4 represents
a program in which node 2 represents a method, the content of
that method at v1,v2, and v3 can be tracked by starting at the row
“n2” of the attribute table at respective version, then following the
“children” slot to display the method.

5.2 Unified versioning framework

To be able to support fine-grained versioning and hyperlinking
at the logical level, we have developed a unified versioning frame-

a‘(structural unit relation> c "operator" |'content'{'POBox"...
directe;d graph or tree ni[intopCfull.)| null |undefined
atomic component - -
1.1 0.1 n2 | intop("na...") null |undefined
root only n3 textop "MSL" |undefined
1.% v1..1 n4|intop("add..")| null "781"
:"S-ro-f""(?t?-uac-i;r;l -l,l-l’;l-t;E ns |intop('stre..”)| null |undefined
L (innode-slotpattern) i n6| textop |"3200.."|undefined
b n7 |intop(city..") | null |undefined
<<ﬂrj1|al?r(1:|g;el\SASS>L </name> ng| textop "Milwa.."| undefined
<address POBox = "781"> n9 | intop('state") null |undefined
<<S/t_<,rtergte>t 3200 Cramer n10 textop "WI" |undefined

<city> Milwaukee </city>

intop(x): a type of intermediate
<state> WI </state> 4

</address> operator with the name x
</fulladdress> textop: unique type of text operator

Note: other attributes such as "children", "parent" are not shown.

Figure5: Atomic component

work for both atomic and composite components in which all com-
ponents are versioned in the same global version space. The frame-
work is based on the tree-based and graph-based version control
scheme that was described earlier. In general, a component is an
abstraction to represent a coarse-grained logical object, which may
or may not be internally structured. It can be defined as a logical
entity that can be versioned, saved, loaded, and exists within the
version space of a software project. Each component carries an in-
ternal component identifier (CID) that serves to identify it uniquely
within the software project. An external CID is a name that may be
assigned by users. A component can represent any logical object
such as documents, programs, directories, object-oriented classes,
functions, modules, etc.

5.2.1 Atomic components

Atomic component is the basic unit for composition and aggrega-
tion in a composite component. The word “atomic” does not mean
that the component can not be divided into smaller units. In fact, in
Molhado, to accommodate fine-grained version control for compo-
nents, an atomic component can be internally composed of logical
units or structural units as mentioned. The internal structure of
an atomic component is represented by a tree or a directed graph
where each node represents a logical unit. Figure 5a) shows the part
of our data model for an atomic component. Each atomic compo-
nent referentially contains the root node (or pseudo-root) of a tree
(or a graph), which is constructed via the node-slot pattern. A com-
ponent’s internal properties whose histories need to be captured are
represented by versioned slots that are inclusively contained within
the component. For example, a versioned slot is defined for a com-
ponent’s name, which might change at different versions.

Figure 5b) and c) show an example of how an XML document
is represented. An XML document is represented by a syntax tree,
which has an additional slot that stores an operator for each node
via “operator” attribute. An operator identifies the syntactical type
of its node and determines the number and syntactical types of
the node’s children. Nodes in an XML syntax tree have opera-
tors drawn from two categories: intermediate and text operators.
The unique text operator is used to represent XML’s character data
(CDATA) construct. Each node associated with the text operator
has an additional slot (defined by the “content” attribute) that holds
the CDATA string. Each element node in an XML document is
associated with an intermediate operator, whose name is the ele-
ment’s name. Each node associated with an intermediate operator

189

component (tree or directed graph

114 f\ component relation

, composite component

0.1
; 1 oot

: - -~ Toot only

' node

L 014 0%

 / i"component"
| * attribute

S00.F
S Y0
0.7 §lot

Figure 6: Composite Component Modeling

has one additional slot for each XML element-level attribute that is
defined for that element. In Figure 5, node “nl”, representing the
“fulladdress™ element, is associated with an intermediate operator
with the name “fulladdress”. Node “n3”, whose “content” slot con-
tains the string “MSL”, is associated with the unique text operator.
The “POBox” attribute of “address” is valid only for “n4”.

To represent for a Java program, a set of operators is defined to
represent the Java AST, with each node in the AST being repre-
sented as a node in the node-slot pattern. In a Java syntax tree,
each node is associated with a slot whose value refers to a Java
operator that defines the syntax for the syntactical unit represented
by the node. For example, an addition expression “x + y” would
be represented by a node that is associated with a slot containing
the “AddExpression” Java operator. Children nodes are left child
and right child of the addition expression. They are both associ-
ated with the same operator named “NameExpression”, and each
of them has a special slot whose value refers to its own identifier.

5.2.2 Composite components

A composite component consists of atomic components and/or
other composite components. Examples include compound docu-
ments, Java packages, architectural composite components, logical
structures such as class hierarchy, UML diagrams, Entity Relation-
ship (ER) diagrams, etc. Unlike in total versioning and composition
versioning approaches, Molhado puts all components (atomic and
composite) under a uniform global version space. Figure 6 shows
the part of Molhado’s data model for composite components using
Whitehead’s notations. A composite’s internal structure is repre-
sented by either a tree or a directed graph. The composite contains
the root (or pseudo-root) of the tree (or the graph). For a tree or
graph node (except the pseudo-root), the associated “component”
slot holds a reference to a component that the composite contains.

Figure 7 shows two examples of composite components. Fig-
ure 7a) shows package component A, which contains class com-
ponents (“class1” and “class2”) and package component B having
“class3” and “class4”. Package A is represented by a tree rooted at
“nl”. Package A referentially contains the root node “n1”. Nodes
“n2” and “n4” are associated with slots containing references to
“class1” and “class2” respectively, while the “component” slot for
node “n3” refers to the composite component B. For simplicity,
other attributes (e.g. children and parent) are not displayed. In
Figure 7b), composite component “program1” is represented in the
same manner. The attribute table is not shown. However, the nodes
“n2”, “n4”, and “n11” in Figure 7b) are associated with slots con-
taining references to “class2”, “class3”, and “class2” respectively.
Note that “class3” and “program1” are composite, while “class2”
is atomic. In contrast, “class1” is a logical unit in “program1”.

a. Composites Representations
packageA A @ __|"component”
_ni1| null
h3) n2| class1
@ O @ n3 | packageB
B = n4 | class2
n5 | null
Fora.: —T =
class{1..4}: atomic components @) @ n6| class3
n7 | class4
b. program1
P1 program1
Include class1 Include2| = @
méth1 meth2 @)
6 ¥
Lclass2 class3 class2, .-, cIassS
M QI
mé«f‘;?‘eth4 infg meth5 @ @ " @

Figure7: Composite Component Example

component
« project

.
.
.

.

<directed graph
0.

’ .
.
.
I .

attribute
component"

Figure 8: Data model for a project

This framework allows software components to be versioned at
both fine (i.e. logical unit level) and coarse (i.e. atomic/composite
component level) granularities in the same manner since the inter-
nal structures of both composite and atomic components are rep-
resented via trees and directed graphs. \ersioning for composite
objects in Molhado does not require version selection rules since
the current version is globally set across a project. Unlike total
versioning in many SCM systems, no version proliferation [10] oc-
curs in Molhado. For example, assume that the name of “meth4”
in Figure 7b) is changed to create a new version, total versioning
also creates new versions of “C2”, “incl3”, “C3”, “Include2”, and
“P1”. While version proliferation need not involve physical copy-
ing, it stills creates cognitive overhead for users. In contrast, in
Molhado only a single new global version is created and only the
“content” slot of the node “n9” (representing for “meth4”) changes
its value at the new version. This composite mechanism (Figure 6)
is also used to represent logical relations among components such
as the parent-child relations among classes in an object-oriented
paradigm. In this case, a tree or directed graph represents the logi-
cal relations among components, rather than the composite’s inter-
nal structure. For example, a composite component can be created
to represent a class hierarchy.

Based on this framework, we have built a rich set of components
including Java classes, Java programs with embedded multimedia
documentation, documentation in XML, HTML, Scalable \ector
Graphics (SVG) documents, UML diagrams, and binary data docu-

190

a. Web_prj

™~
code , UW.html

1
classA wisc.ntml uwm.html
1

y'e
classB classC | math. cs. bus.

classD cIassE: htmlhtml html

b. class hierarchy ' logical hierarchy
"component” |"component"

n1|Web_prj ng | UW.html

n2 | code n9 | wisc.html

n3 | classA n10| uwm.html

n4 | classB n11| math.html

n5| classC n12| cs.html

n6 | classD n13| bus.html

n7 | classE

Figure9: Versioning for a project

ments. Molhado is able to import and export its internal documents
(stored in our persistent format) from and to external formats (Java,
XML, HTML, ASCII text, SVG) at any version. Binary data files
such as image, audio, and object files are considered to have no
internal structure for versioning purpose. To enable HTML-style
embedded hyperlinks among these components, an “href” attribute
is defined for each node in a component’s tree or graph. A “href”
slot contains a URL referring to a logical unit in any component.
Therefore, embedded hyperlinks can be attached to and can point to
any logical unit in components. Importantly, this approach to bind-
ing embedded hyperlinks to source code does not interfere with
program compilation, which ignore the “href” attribute.

6. CONFIGURATION MANAGEMENT

The distinguished characteristic between Molhado and many ex-
isting SCM systems is its ability to organize and to version a soft-
ware project in terms of logical components. Many of them treat a
software system as a “set of files” in directories on a file system, and
stable configurations are defined implicitly as sets of file versions
with a certain label or tag. This creates an impedance mismatch
between the design and implementation domain (logical level) and
the configuration management domain (file level).

To minimize the mental gap and and to enable the version control
for the logical structure of a software project, we introduce a notion
of project. A project is a named entity that represents the overall
system logical structure of a software project. A project’s version
is called configuration. Figure 8 shows the part of Molhado’s data
model for a project. Although a project is often tree-structured,
complicated logical structures such as ER diagrams might require
a directed graph representation. To be general, a project referen-
tially contains a pseudo-root node of a directed graph. For a given
graph node (except the pseudo-root), the associated “component”
slot contains a reference to a composite or an atomic component.
Since the overall architectural structure (i.e. a project) is repre-
sented as a directed graph, it is versioned in accordance to the di-
rected graph versioning scheme. Notice that modeling for a project
is very similar to a composite component. However, a project can
not be used as a composite component in any compositional hier-
archy. Instead, it must be regarded as the outermost composite of
all components and sets up the context for the global version space.
That is, the scope of the current version is at the project level.

Figure 9a) shows the logical structure of a Web project. Its repre-
sentations in Molhado are in Figure 9b) and c). In this example, the
Java class components are organized into a class hierarchy, while

hypertext network linkbase

atomic component composite

<directed graph component
L O 0.1, 4

0.1% ("ee> 10.1
\ rootonly:. “ rootonly |
\ 1.1 A " 1.1 h

\ node !

' (structural unit) :

| anchor, link K

\ 0.1,

‘
v

v ;
0. !
:

attribute "ref'j."
0.1 L.t

AN Aot
slot™ 0.%

0..

¥

‘.
*1r Q.-

Figure 10: Data model for hypertext

HTML components are structured accordingly to the logical orga-
nization of the University of Wisconsin system. The project’s struc-
ture is obviously logical and independent of a file system. Note that
the directory components “Web-prj” and “code” are used to group
other components and do not correspond to directories in a file sys-
tem. Notice that this product versioning approach, which versions
a software project as a whole entity, always assures the construc-
tion of a consistent configuration since when a project version is
chosen as current, the project’s directed graph will be correctly re-
trieved and versioned slots associated with nodes in the graph will
refer to proper components at the current version as well. Then, the
internal structure of each component and the contents of slots are
determined as described in Section 5.

7. HYPERTEXTNETWORKVERSIONING

The structure versioning framework in Section 5 also provides
infrastructures for the Molhado’s versioned hypermedia model. The
model is based on the following concepts: linkbase, hypertext net-
work, link, and anchor. A linkbase is a container for hypertext
networks and/or other linkbases. The relation between a linkbase
and a hypertext network is the same as the relation between a di-
rectory and a file in a file system. A hypertext network can belong
to only one linkbase. A hypertext network contains links and an-
chors. A link is an association among a set of anchors. An anchor
can belong to multiple links. A link or an anchor can also belong
to multiple hypertext networks. An anchor is used to denote the
region of interest within a component, and it refers to either a com-
ponent or a structural unit in a component. Links and anchors can
be associated with any attribute-value pairs.

Figure 10 shows part of the data model for hypermedia enti-
ties. A hypertext network is implemented as another type of atomic
component, whose internal structure is a directed graph. It contains
only the pseudo-root of the directed graph. Each link or anchor is
represented by a node in that graph. A directed edge connects an
anchor’s node to a link’s node if the link contains the anchor. An
additional attribute, attribute “ref”, is defined to associate an extra
slot to each anchor’s node in the graph. The slot holds a refer-
ence to either a component or a structural unit within a component
(but not to a hypertext network or to a linkbase). That structural
unit (or that component) is considered as the position of the anchor.
This separation between anchors and structural units allows for the
separation between hypertext networks and component contents.
Attribute-value pairs associated with links and anchors are imple-
mented via the node-slot pattern as in XML documents. A linkbase
is implemented as a composite component, whose internal structure
is a tree. As in a composite component, for each node in the tree,

191

Versionvl doc3 prog1 Version v2 prog1
section? | IInk2 [classT d link2 ["cTassT
a. .
class2 _C%I
doct doc2 doct doc2 —
T link1 i link1
section1 paral section1 paral
ara.
] pa—
) % oo
< @ f. @
"ref" "children" - 3 "ref "children" - 4
1 [n(sectionT) seql % 1 [n(sectionT) seql ﬂ
2| null null 2| null null
3 | n(paral) seq2 seq2 3 [n(para1) seq3 seq5
4 | n(para2) seql [276] 4 | n(para2) seq4 [6]9]
5 [n(section2) | seq3 n(x): the node 5 | undefined | undefined seqb
6 | null null representing for _6 | null null i’
7 | n(class1) seq3 structural unitx 7 | n(class1) seq3
8 | n(class2) seq3 (not shown in 8 | n(class2) seq5
the attribute 9| null null
table) 10 [n(class3) seq6

Figure 11: Versioning for hypertext networks

Version v1 Version v2
a. doc1 ! doc2 : d. doci ' doc2
section1 | k1 para1]! section | Nkl Mpara1
e+ o —
S para2 | para2
w1 | doc2 —
b. abc ' — “a
* . section, "ABC"
-0 . IEVI Lo
c @ :ﬂ ®
"ref" |"children" ' f, ©
1 5 seql seql "ref" |"children" seql
2 [null|_null 1] 5 | seql
3| 6 seql 2 [null| null
4 7 seql 31 6 seq1l
' 4 [_undefined
__|"content" P48 Sei "content”
(section1) 5 "abc" (section1) 5 | "ABC"
(paral) 6 "def" (paral) _6 | "dﬁf_"
"ghi" (paraz) 7_ "g i"
(para2) 7," ant (section2) 8 | "jkI"

Figure 12: Versioning for hyperlinks

the associated “component” slot (not shown in Figure 10) contains
a reference to a hypertext network or another linkbase.

Figure 11 shows an example of hypertext network versioning.
Figure 11a) and d) display the network at two versions v1 and v2.
The directed graphs representing for structures of the network at
these two versions are in Figure 11b) and €). Links’ nodes (e.g.
nodes 2 and 6) have edges coming into them and do not refer to
anything. Figure 11c) shows part of the attribute table for the
network at version v1. The “ref” cell for an anchor node (e.g.
node 1) contains a reference to the corresponding document node
(e.g. n(sectionl)). Figure 11f) shows the attribute table at version
v2. Node 5 is deleted. Node 3 now has only one child. Node 9 (rep-
resenting link3) and node 10 (representing class3) are just created.
The “ref” cell for node 10 points to class3.

In general, via the directed graph versioning scheme, the history
of a hypertext network is recorded. If the position of an anchor
is changed from a structural unit to another, the “ref” slot for the
anchor’s node will be changed to refer to the new structural unit.
Deletion to document nodes might result in deletion of anchors. It
is true that any modification to a document node’s content, for ex-
ample “section1” of “docl”, will change the “content” slot of the
node. Therefore, any change to a hypertext network and related

[] Project Structure Window

Project Structure | Hupertext Structure
Capture

Project: Sofware Concordance
Wersion: v9.1
-
[tutorial
@ arc
@ 3 document
Q SCDocument java
@ scxmiDocumentjava
SCJavaDocument java
Q SCUmIDocument java
Cui
[T config
3 version
@ Clinkbase
[c] SCEWGDocument java
D indexxml

roh o

Edit

|

Delete

HNew Directory

New Document

Import Document

Close Documents

Cancel

4]

Info:

Figure 13: Project structurewindow

components will be reflected in a newly created version. In addi-
tion, the history of a link is recorded as well. Figure 12 shows an
example of link versioning. Figure 12a) and d) show the link at
two versions v1 and v2. In version v2, “para2” is removed from
the link, “section2” of “doc2” is inserted, and the content of “sec-
tion1” is changed from “abc” to “ABC”. Figure 12b) and ¢) display
the directed graph representing the link at v1 and v2. Figure 12c)
and f) show the attribute table for the graph and document nodes at
vl and v2. Similar to versioning for a hypertext network, changes
in the attribute table reflect changes in member anchors of the link
and contents of document nodes.

8. SC ENVIRONMENT

This section describes Molhado’s hypertext versioning services
that were integrated into the Software Concordance (SC), which
supports program analyses, structural editing, and HTML hyper-
links among Java programs and multimedia documentations [35].

8.1 SCM operational model

Molhado and the SC user interfaces support a variety of trans-
actions. First of all, a user can open an existing project. After
selecting the current (working) version from a project history win-
dow, the system displays the project’s structure and its components
in a project structure window (see Figure 13). This window serves
as an overview and table of contents for the project at the selected
version. From this window, the user can choose to edit, delete, im-
port, or export any component and hypertext network. Also, via
the window, users can graphically modify the project’s structure.
The version that is initially displayed in this window is called the
base version. If any modification is made to the project at this base
version, a new version would be temporarily created, branching off
the base version. The word “modified” will be attached to the base
version’s name in this window and the window now shows infor-
mation at the temporary version derived from the base version. The
user can choose to discard any derived (temporary) version (i.e. any
changes to the base version), or to capture the state of the project
at a version. Capture will change a temporary version into a cap-
tured one. Bookkeeping information such as name, date, authors,
and descriptions can be attached to the newly captured version for
later retrieval. The captured version plays the role of a checkpoint
to which the user can refer and becomes the new base version of the
project structure window. However, no data is saved after a capture.

Switching to work on a different version can be done explicitly

192

7 A

Create C-Link Create NC-Link Delete Link Rename Info Layout Link History Conformance Analysis Link validation

E N ql H: lLinkLust

Delete anchar b
Doorli

—

req_10

Add anchor to active link “n2"

Go to document

Remave anchor from “c8"
Remave anchor from “c16™

Door_ | Loca

Info:

Figure 14: A hypertext network editing window

or implicitly, whether or not the current version has been captured.
If the user moves the mouse focus to a window, the working version
is automatically set to the version that window is displaying. The
user can also explicitly select a different version from the project
history window and open it. The user may commit changes at any
time. Upon issuing this command, the user is asked which un-
captured, temporary versions should be saved and the chosen ver-
sions are then saved to the file system along with any already cap-
tured versions. Only the differences are stored. The user may also
save complete version snapshots, which can improve version ac-
cess time. Each user does not see changes from others, therefore,
no locking mechanism is needed. Users will share the data files and
using merging tools to collaborate. A more centralized versioning
repository similar to CVS [32] is being implemented. A set of diff
tools is provided to compare two arbitrary versions (not necessarily
predecessor or successor of each other) at different levels: 1) struc-
tural unit, 2) component, and 3) the whole system, in both structural
and line-oriented manners.

8.2 Versioned hypermedia services

Versioned hypermedia functionality in SC can be divided into
two groups: 1) linkbase and hypertext network services, 2) link and
anchor services. The first group are mainly provided via menus at
the project structure window. The window displays the structure of
the project as well as of linkbases. Users can create a linkbase or a
hypertext network, delete existing hypertext networks or linkbases,
re-structure linkbases and relocate networks among linkbases, open
an existing hypertext network, select a hypertext network to be ac-
tive, import and export a hypertext network from and to XLink for-
mat at any version.

Figure 14 shows an example of a hypertext network. A circle
represents for a link, a rectangle for an anchor. In this hypertext net-
work, there are two types of links: causal and non-causal. These
two types are used to build supports for traceability and consistency
management among software documents [34]. Causal links carry
with them an implied logical ordering of the documents involved.
They may have multiple source and multiple target anchors. Non-
causal links exist when documents or parts of them must be related
and agree with each other, but the causality cannot be clearly identi-
fied. While non-causal links are directly represented by Molhado’s
links, causal links are extended from them. In Figure 14, there
are directed edges coming from source anchors to causal links, and
from causal links to target anchors. There are only non-directed

£ Link History, X
Project: Sofware Concordance Version Info:
Component: Conformance Analysis Name: v0.1.1.2

129 wersion: va.2
& 15 version v
@ I version: va1 1
@ Dversion:vad 1l |2
9 Wersion w4 1.1 2 A
T | ’l

&

desc_4

desc_1

- o S r
desc_3 74 SCDocumentr
p———e——

Construciors

protected SCDocument (int magic, UniguelD id)
i

super (magic, id);

region = null;

rootSlot = VersionedSiotF actory. prototype. predefinedSlotnull;
dtd = null;

Figure 15: Versioning for alink

& Software Concordance =
Project Versionys Help
_ ‘\ “ e /I Sl ABC‘- =)
Ra@BOd® A 2
[use Dependencies @ [|f 7 bocumentc <d E
Create C-Link Create NC Link Delete Link Rename Info Layout Document _ Presentation
=i st [&
oerl_script| ota_fle| utities.cc s fex| 7' e
gec_1 include <stdioh> -
vison
occ_2 #include <fstreami>
eSS #include <unistd>
|
gcc 6
ace_7
o8 #include "Document ™
ooc 0 #include "uiilties h"
gec_10
smitabn | smiecce| | [pert include "AfirLListh"
[conformance & E

Create C-Link Create NC-Link DeleteLink Rename Info Layout

<] _LinkList
lex_req_t require |~
agree

parser_rea_ parser_req_5 perl_exension

7 Project Structure Window

e e
(Project Structure. | Hypériext Structire “ o
coptre o contorm
imply
Praject ¥MLParser /N oaure_2
Version: v5 (modified) imply_2
& Parser =) ||| parser_design_s— peri_script | dtd desc| lewer_design 5| lexer_design 6 | | |implements
@ C3MLDocument implemente
[Documento implement(
[Documentc """:"":'
micment
B oocumentn moenen
© [Documentiode hea
© [Atiribute ‘eader_agf
cater o
@[3 uiils

heaer_agl
@ Cldocs veatter _agi

D) parserdesignami
[teser-designami
D) parsersaurerents

heatter_agl
heater_agl

AtrLListh [Atice [

E“’ -

Figure 16: Multiple hypertext networks

edges for non-causal links. Services for links include link creation,
deletion, renaming, attribute’s value viewing, and link history view-
ing. Figure 15 shows the history of the link “agrees”. Note that the
link was not created until the version v9.1.1.1. Therefore, the ear-
lier versions on the top window are “disabled”. The constructor of
the class “SCDocument” was displayed in the bottom window since
the user clicked on the corresponding anchor. The version history
of a hypertext network is displayed in the same manner. Figure 16
shows two hypertext networks. The one on top plays the role of
a graphical makefile while the other shows a dependency network
on the same set of components. Also, the versions of the graphical
makefile are consistently maintained with those of the project.
Services for anchors are also provided at the hypertext network
editing window. They includes deleting an anchor, adding an an-
chor into the active link, removing an anchor off some link, renam-
ing an anchor, and displaying the structural unit that the anchor
refers to (see Figure 14). If the user chooses to open the associated
structural unit of an anchor, the editor of the corresponding com-
ponent is invoked (such as structured Java program, XML, HTML,

193

e E

—
[Betjava

Document Presentation
B & 2

. el
private BellListener belll istener §
If ifring bell and send BellEvent object to listener
private woid ringBell { Location location)

{
if (bellListener 1- null) Delete
bellListener . bellRang { n(Edit

) History

location))

Insert >
Hyperlink 3
Documentation M

i/ set BellListener
public void sefBellListener (Bl
€

hellListerier - listener ;
}
it invoked when Elevator has departed
public void elevatorDeparted { ElevatorMoveEvent moveEvent)
{
<q Iv]
JavaSimpleStyle1

Done.

Make alink

Delete associted link

Goto active hypertext
Reattach anchor new_anchor

[4]

Figure 17: Component editor

SVG graphics, UML diagrams, or plain text editors). The editors
are all hypertext-savvy and version-savvy. Figure 17 shows the
structured editor for Java programs. When the user right-clicks on
a document node, a popup menu is displayed to allow the user to
create an anchor at the node and add it to the active hypertext net-
work, or to open the active hypertext network of an anchor, or to
relocate an anchor to a different document node, etc.

Molhado’s product versioning model for hypertexts facilitates
the construction of these graphical user interfaces (GUIs) for ver-
sioned hypermedia services. For example, users’ traversal can be
done via embedded HTML-style hyperlinks or via a hypertext net-
work without involving users’ selection of revisions of individual
hypertext entities since the traversal occurs among components at
the current version, which is implicitly and globally determined via
user interface actions. Therefore, the user does not have to specify
which revisions of hypertext elements they want to refer to. Simi-
lar to traversal, other hypertext operations such as deletion or inser-
tion of anchors or links do not require any version selection rules.
Molhado’s hypertext versioning model also reduces the cognitive
overhead for users in version creation of links, anchors, or nodes
in a hypertext structure. When the user is ready to record the state
of the project after modifying hypertext networks or components,
a capture or a commit command can be issued and a new version
will be created. The user does not need to check in or check out
components or hypertext entities individually.

9. CONCLUSIONS

This paper describes Molhado, a new hypertext versioning and
SCM system that are well-suited for software logical relationship
management. It contributes a novel versioned hypermedia model
and a unified structure versioning framework for components and
hypertext structures among them. The model avoids the complica-
tions of version selection rules in composition model and the ver-
sion proliferation problem in total versioning model. It also facili-
tates the development of a GUI for versioned hypermedia services,
which reduce the cognitive overhead for users in version creation
and version selection of hypermedia elements in hypertext opera-
tions. Software components and hypertext structures are uniformly
versioned in a fine-grained manner, allowing users to return to a
consistent previous state not only of a hypertext network but also
of a single node and of a hyperlink.

Acknowledgments: We would like to thank Dr. Jim Whitehead at
the University of California - Santa Cruz for his helpful comments
and the sketch for figures 3a), 5a), 6, 8, and 10.

10.

ADDITIONAL AUTHORS

Cheng Thao (Department of EECS, University of Wisconsin-Milwaukee,
email: chengt @s. uwm edu)

11.
(1]

[

31

(4]

(5]

6]

(71

(8]

(9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder. KMS:

a distributed hypermedia system for managing knowledge in
organizations. Communications of the ACM, 31(7):820-835, 1988.
Maurice Amsellem. ChyPro: A hypermedia programming
environment for SmallTalk-80. In Proceedings of ECOOP, 1995.
Kenneth M. Anderson, Richard N. Taylor, and E. James Whitehead,
Jr. Chimera: hypermedia for heterogeneous software development
environments. ACM Transactions on Information Systems (TOIS),
18(3):211-245, 2000.

UIf Asklund, Lars Bendix, Henrik Christensen, and Boris
Magnusson. The unified extensional versioning model. In
Proceedings of the Ninth International Symposium on Software
Configuration Management, SCM-9, pages 100-122. Springer, 1999.
L. Bendix, Antonina Dattolo, and Fabio Vitali. Software
configuration management in software and hypermedia engineering.
Handbook of Software Eng. and Knowledge Engineering, 1, 2001.
Lars Bendix and Fabio Vitali. VTML for Fine-grained Change
tracking in Editing Structured Documents. In Proceedings of the
Software Configuration Management Workshop. Springer, 1999.
James Bigelow and Victor Riley. Manipulating source code in
DynamicDesign. In Proceedings of the Hypertext, 1987.

John T. Boyland, Aaron Greenhouse, and William L. Scherlis. The
Fluid IR: An internal representation for a software engineering
environment. In preparation. For information see
http://ww. fluid.cs.cru. edu.

Mark C. Chu-Carroll, James Wright, and David Shields. Supporting
aggregation in fine grained software configuration management. In
Proceedings of the tenth Foundations of software engineering
symposium, pages 99-108. ACM Press, 2002.

Reidar Conradi and Bernhard Westfechtel. Version models for
software configuration management. ACM Computing Surveys
(CSUR), 30(2):232-282, 1998.

R. Cronk. Tributaries and deltas. BYTE, pages 177-186, Jan 1992.
Cybulski and Reed. A Hypertext Based Software Engineering
Environment. IEEE Software, 9(2):62-68, March 1992.

Delisle and Schwartz. Neptune: A hypertext system for CAD
applications. In Proceedings of SIGMOD, pages 132-142. 1986.
Norman M. Delisle and Mayer D. Schwartz. Contexts: partitioning
concept for hypertext. ACM Trans. Inf. Syst., 5(2):168-186, 1987.
David Durand. Palimpsest: Change-oriented concurrency control for
the support of collaborative applications. PhD thesis, Boston
University — Boston, 1999.

James C. Ferrans, David W. Hurst, Michael A. Sennett, Burton M.
Covnot, Wenguang Ji, Peter Kajka, and Wei Ouyang. Hyper\Web: a
framework for hypermedia-based environments. In Proceedings of
the Symposium on Software Development Environments, pages 1-10.
ACM Press, 1992.

Pankaj K. Garg and Walt Scacchi. A hypertext system to manage
software documents. IEEE Software, 7(3):90-98, May 1990.
Goldstein and Bobrow. A Layer Approach to Software Design.
Interactive Programming Environments. McGraw-Hill, 1984.

Jon Griffiths, David Millard, Hugh Davis, Danius Michaelides, and
Mark Weal. Reconciling versioning and context in hypermedia
structure servers. In Proceedings of the 1st International
Metainformatics Symposium, 2002.

Anja Haake. CoVer: a contextual version server for hypertext
applications. In Proceedings of the ACM conference on Hypertext,
pages 43-52. ACM Press, 1992.

Anja Haake and David Hicks. VerSE: towards hypertext versioning
styles. In Proceedings of the seventh ACM conference on Hypertext,
pages 224-234. ACM Press, 1996.

David L. Hicks, John J. Leggett, Peter J. Nrnberg, and John L.
Schnase. A hypermedia version control framework. ACM
Transactions on Information Systems (TOIS), 16(2):127-160, 1998.
Thomas Kejser and Kaj Gronbak. The GAIA Framework: \ersion
Support In Web Based Open Hypermedia. In proceedings of IADIS

194

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

International Conference on WWW/Internet, 2003.

D. Leblang. The CM challenge: Configuration management that
works. Configuration Management, 2, 1994.

A. Lie, R. Conradi, T. Didriksen, E. Karlsson, S. Hallsteinsen, and
P. Holager. Change oriented versioning. In Proceedings of the Second
European Software Engineering Conference, 1989.

Y. Lin and S. Reiss. Configuration management with logical
structures. In Proceedings of the Eighth International Conference on
Software Engineering, pages 298-307, 1996.

Boris Magnusson and UIf Asklund. Fine-grained revision control of
Configurations in COOP/Orm. In Proceedings of the Software
Configuration Management Workshop, pages 31-47. Springer, 1996.
C. Maioli, S. Sola, and F. Vitali. Versioning for Distributed Hypertext
Systems. In Proceedings of ACM Conference on Hypertext, 1994.
Melly and Wendy Hall. Version control in Microcosm. In
Proceedings of the Workshop on the Role of Version Control in
CSCW, September 1995.

Danius Michaelides, David Millard, Mark Weal, and D. DeRoure.
Auld Linky: A contextual open hypermedia link server. In
Proceedings of the 7th Open Hypermedia System Workshop, 2001.
Dave E. Millard, Luc Moreau, Hugh C. Davis, and Siegfried Reich.
FOHM: a fundamental open hypertext model for investigating
interoperability between hypertext domains. In Proceedings of the
Conference on Hypertext, pages 93-102. ACM Press, 2000.

Tom Morse. CVS. Linux Journal, 1996(21es):3, 1996.

Theodor Holm Nelson. Literary Machines. Mindful Press, 1987.
Tien N. Nguyen and Ethan V. Munson. A model for conformance
analysis of software documents. In Proceedings of the International
Workshop on Principles of Software Evolution, 2003.

Tien N. Nguyen and Ethan V. Munson. The Software Concordance:
A New Software Document Management Environment. In
Proceedings of the 21th International Conference on Computer
Documentation. ACM Press, 2003.

Kasper @sterbye. Structural and cognitive problems in providing
version control for hypertext. In Proceedings of the ACM conference
on Hypertext, pages 33-42, 1992.

Kasper @sterbye. Literate SmallTalk using hypertext. IEEE
Transactions on Software Engineering, 21(2):138-145, Feb 1995.
Christoph Reichenberger. VOODOO: A Tool for Orthogonal Version
Management. In Proceedings of the Software Configuration
Management Workshop, SCM-5, pages 61-79. Springer, 1995.
L.F.G. Soares, G.L.d. S. Filho, R.F. Rodrigues, and D. Muchaluat.
Versioning support in HyperProp system. Multimedia Tools and
Applications, 8(3):325-339, 1999.

Norbert Streitz, Jorg Haake, Jorg Hannemann, Andreas Lemke,
Wolfgang Schuler, Helge Schutt, and Manfred Thuring. SEPIA: a
cooperative hypermedia authoring environment. In Proceedings of
the ACM conference on Hypertext, pages 11-22. ACM Press, 1992.
Walter F. Tichy. RCS - a system for version control. Software -
Practice and Experience, 15(7):637-654, 1985.

Andre van der Hoek, Dennis Heimbigner, and Alexander L. Wolf. A
generic, peer-to-peer repository for distributed configuration
management. In Proceedings of the ICSE’96. IEEE, 1996.

Tim A. Wagner and Susan L. Graham. Incremental analysis of real
programming languages. In Proceedings of the 1997 ACM SIGPLAN
conference on Programming language design and implementation,
pages 31-43. ACM Press, 1997.

L. Wakeman and J. Lowett. PCTE: the standard for open
repositories. Prentice Hall, 1993.

E. James Whitehead, Jr. A proposal for versioning support for the
Chimera system. In Proceeedings of the Workshop on Versioning in
Hypertext Systems. ACM Press, 1994.

E. James Whitehead, Jr. An Analysis of the Hypertext Versioning
Domain. PhD thesis, University of California — Irvine, 2000.

E. James Whitehead, Jr. WebDAV and DeltaV: collaborative
authoring, versioning, and configuration management for the Web. In
Proceedings of the ACM conference on Hypertext and Hypermedia,
pages 259-260. ACM Press, 2001.

Uffe K. Wiil and John J. Leggett. Hyperform: using extensibility to
develop dynamic, open, and distributed hypertext systems. In
Proceedings of the Conference on Hypertext. ACM Press, 1992.

