
A Unified Model for Product Data Management
and Software Configuration Management

Tien N. Nguyen, Electrical and Computer Engineering Department, Iowa State University

Abstract

Software Configuration Management (SCM) is the disci-
pline of managing the evolution of a software system. Prod-
uct Data Management (PDM) is the discipline of control-
ling the evolution of a product design. These two domains
have been evolving independently and fairly disconnected.
Nowadays, the development of modern products involves
a substantial and growing part of software development.
However, due to the limitations of approaches taken by both
domains, efforts to build a unified configuration manage-
ment (CM) model of SCM and PDM have had limited suc-
cess. This paper presents a novel unified CM model and
its associated CM infrastructure/tools that are configurable
and tailorable to support any engineering area. Key contri-
butions include a novel methodology, a unified CM model,
and associated tools that allow for the automatic genera-
tion of CM code for supporting both hardware designs and
software artifacts in multidisciplinary engineering areas.

1 Introduction

Engineering disciplines have sought to control the way

physical products can be designed and realized. With soft-

ware supports, product data management (PDM) tools are

concerned with the management and change control of de-

sign and product data, that is, machine-readable data about

physical objects [3, 7]. On the other hand, software configu-
ration management (SCM) is the discipline of managing the

evolution of large and complex software systems [2]. The

PDM and SCM research have been evolving fairly indepen-

dently. Many researchers showed that PDM and SCM have

studied similar issues and their tools have much in common:

design philosophies and methods, versioned data structures,

etc [10, 16]. However, there exists fundamental differences.

Firstly, PDM has a well-established data representation

model, called EXPRESS [13]. It consists of a family of

object-oriented modeling languages dedicated to the de-

scription of artifacts and their constraints in a product.

In contrast, SCM systems have no explicit data model or

when present, their data models are weak such as ASCII

texts [10]. Another significant difference is about product
model, i.e., how a product is modeled in PDM and SCM sys-

tems. Many SCM tools consider the structure of a product

as a tree of files and directories. Advanced SCM systems

introduced the notion of a system model [17], which gives a

detailed description of a software product. However, these

systems (with some exceptions [9]) are based on files and/or

other hard-wired concepts with predefined “horizontal” re-

lationships among files (e.g. import dependencies in a build

process). In contrast, hierarchies or “vertical” composition

relationships are considered more important in PDM.

Versions and changes are also managed differently in

PDM and SCM systems. In PDM, revisions of an object

form a sequential series (i.e. linear versions), with no pos-

sibility of performing parallel changes. Versioning in SCM

allows branching and merging of the branched tracks. Fur-

thermore, in PDM, versioning concepts are added into a

product model. That is, different versions of an object are

stored as individuals in a database, and version-related re-

lations among objects (e.g. predecessor-successor, option-

of) are represented as relationships among object versions.

PDM databases do not have an explicit storage representa-

tion for internal changes between object versions. In SCM,

versioning is handled at the data model. Changes between

file versions are managed as differences between text lines.

Nowadays, there is definitely an increasing need for a

unified model between PDM and SCM that supports mul-

tidisciplinary engineering areas. However, the integration
between PDM and SCM has had very limited success [3].

Poor interoperability occurs. Due to their differences, mod-

els, tools, and methods from one domain do not carry well

over the other [8, 10]. Manual integration approach us-

ing import/export functionality causes inconsistency prob-

lems [8]. Loose integration with interoperability APIs be-

tween systems is largely ad hoc and unsatisfactory [3].

2 Unified CM Model

Unlike other approaches for PDM and SCM integration,

we provide a novel methodology, tools, and infrastructure

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Generic data
 model

Graph-based
representation model

Structure
versioning

 Version model

Object-oriented data model with explicit relationships

 EXPRESS,
 Simulink

 SystemC,
 Verilog, HDL

 ADL
 schema

Specialized
specification

Class()------------------------

Function ()--------------

--

========================

Product model

 configuration
 management
 model

 concurrent &
 process
 models

user interfaces,
 business
 model

 Molhado

version
dimension

Nodes

Attributes

Figure 1. Unified CM Model

to build fully unified configuration management (CM) sys-

tems, supporting for engineering product data in multidisci-

plinary areas. Key ideas of our approach include modeling

of products in terms of objects, fine-grained versioning of

objects, and enabling version branching and structural dif-

ferencing/merging of objects. The concept of object in our

model is the same as in object-oriented models. Figure 1

summarizes the main components in our unified CM model.

Versioned Data Model: Firstly, the fundamental layer

of our unified CM model is a generic versioned data model,

called Molhado [15]. The key characteristic of Molhado is

the integration of a product versioning model into a generic

data model. Three main concepts in that data model are

node, slot, and attribute. A node is the basic unit of identity

and has no values of its own. A slot is a memory location

that can store a value of any data type, possibly a reference

to a node or a set of slots. A slot can exist in isolation. A

slot may also exist in a container, an entity with identity and

ordered slots. Typically, a slot is attached to nodes, using an

attribute. An attribute is a mapping from nodes to slots. In

general, we have attribute tables whose rows correspond to

nodes and columns correspond to attributes. The cells of

the attribute tables are slots. Version control is provided by

adding a third dimension into these attribute tables. Prod-
uct versioning model is used in which a version is global
across entire product and is a point in a tree-structured dis-
crete time abstraction [15]. That is, the third dimension in

these attribute tables is tree-structured. The state of entire
product is captured at certain discrete time points. Our per-

sistent mechanism handles the storage of slots in versioned

attribute tables. No file versioning is involved.

This integration between the data and version models al-

lows objects’ internal properties and structure to be visible

to the versioning system. The main departure point of our

approach from existing ones is the application of version

control to an intermediate data model, rather than to a high-
level product model as in PDM systems or to a low-level
text-based data model as in SCM systems. This approach

creates the flexibility for our model to support any prod-

uct model involving both objects and document-centric ar-

tifacts. In PDM systems, the restriction to version-savvy

product models (object-oriented or entity-relationship mod-

els) makes it harder to support document-centric software

artifacts such as programs or documentation. In contrast,

versioning at the textual data level as in SCM systems is not

well-suited for structured objects.

Version Control for Objects: In our unified model, the

high-level data model representing components in a product

is the object-oriented data model with the explicit represen-

tation of relationships including structural, compositional

relationships, dependencies, etc. The object-oriented model

has shown its success in both PDM and software develop-

ment, and is sufficiently powerful for multidisciplinary en-

gineering areas. The chosen supporting language is Java

due to its popularity and the availability of associated tools.

That is, the code that will be generated from users’ specifi-

cations is in term of Java classes containing CM code. Our

goal is to provide CM support for components in any en-

gineering product, which is modeled in term of objects in

the object-oriented data model. Therefore, we built a mech-

anism to manage different versions and configurations of

objects. It is built based on Molhado versioned data model

with Java reflection and inheritance supports.

Two basic Java classes are provided: “product” and

“component”, which represent products and their com-

ponents, respectively. Representations of domain-specific

products (e.g. software product, computing system) are

generated as sub-classes of “product” class. Technically, a

“product” is a named entity that represents the overall log-
ical structure of a product. In our model, a “product” con-

tains a structure that is composed of “components”. That

structure is implemented in the form of an attributed, di-

rected graph. Depending on the application domain, the

structure in a “product” will represent different forms of

system structures such as the architecture of a mechanical

product, the architectural structure of an embedded system,

the file directory structure of a software system, etc.

Representations of domain-specific objects described in

specifications are automatically generated as sub-classes of

“component”. It could represent a hardware design object,

a sub-product, an architectural component, etc. For source

code control, “component” can model program, object-

oriented class, function, package, file, etc. A “component”

has a unique identifier and can be versioned, saved, loaded,

and exists within the version space of a product. The “com-

ponent” class also sets up object loading/saving functions

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

for derived types of objects in accordance with our persis-

tence mechanism. The storage and retrieval of a “compo-

nent” is based on the Java reflection mechanism.

In our unified model, two groups of components can be

generated: atomic and composite. Composite components

can share the same constituent components, and have inter-

nal structures. For an atomic or composite component, an

internal property whose value changes over time is gener-

ated as a versioned slot with its data type. Otherwise, non-

versioned slots are used. Object properties are manipulated

via our APIs for slots such as “getValue” and “setValue”.

These functions know how to retrieve the right slot value at

a version, and to modify slots at the current version.

Graph-based, Structure-oriented Versioning: The

CM support for composite objects is especially important

in accommodating both PDM and SCM. In our model, the

internal structure of a composite object is represented by a

special data structure, called attributed, typed, nested, and

directed graphs. In this type of graph, each edge has ex-

actly one source and one target node. A node or an edge

has a unique identifier and can be associated with multiple

attribute-value pairs. The domain of a value can be any data

type. These typed attributes accommodate multiple proper-

ties associated with objects and relationships, depending on

the interpretation given to nodes and edges. Our model also

allows a directed graph to be nested within another in order

to support composition and aggregation among objects.

A novel structure-oriented versioning algorithm for this

type of graph was developed to provide the fine-grained

content change and version management. The algorithm

takes advantage of Molhado’s storage and versioning capa-

bilities for versioned attribute tables. That is, an attributed,

typed, nested, directed graph is represented as an attribute

table. Graph nodes/edges are represented as rows, and at-

tribute values as slots in the attribute table. To support nest-

ing graphs, our versioned reference mechanism is used [15].

Common structures are shared among versions and fine-

grained versioning is achieved for any object that is repre-

sented by a node. Using a directed graph for object’s inter-

nal structure, any structure among direct sub-components of

a composite can be modeled. This is a distinguished feature

from existing CM models, which support the composition

of multiple sub-components but no relations between them

can be defined. This type of graph also supports document-
centric software artifacts commonly found in SCM since

those artifacts can be regarded as DOM tree-structured doc-

uments [5]. Our system inserts code for manipulating a

graph and slots into a generated domain-specific class.

Object-oriented CM: Configuration management is

more than version control for product entities. Typical tasks

include transaction services, the management of configura-

tions, concurrent engineering, workspace, and process man-

agement. Fortunately, most of these functions can be reused

from Molhado SCM infrastructure [15]. Using graph-based

structure-oriented versioning and Molhado’s product ver-

sioning creates a significant benefit, which is the simplicity

of generated CM code to compose consistent configurations

among objects. The reason is that the product versioning

engine maintains the connection between versioned slots of

the same version of a product (i.e. a configuration). So, it is

able to retrieve objects in the same configuration.

Structure-oriented Differencing and Merging: Differ-

encing and merging tools for different versions are crucial in

concurrent engineering control. However, they are currently

limited in PDM. In SCM, differencing/merging between file

versions are handled in term of text lines. In our model,

since objects’ structures are represented as attributed, di-

rected graphs, we have developed structure-oriented differ-

encing and merging algorithms for that type of graph.

The structure-oriented differencing algorithm can deter-

mine if a node or an edge has been deleted, inserted, or

moved, and if a value in an associated attribute table has

been modified. A function to return differences between

two versions of an attributed, directed graph is also pro-

vided. The algorithm is based on the following characteris-

tics. Firstly, the unique and immutable identifiers of nodes

and edges facilitate the management of object histories, es-

pecially when objects are moved. Secondly, we assume that

editing environments for objects are structure-oriented, in

which the operations preserve the identifiers. Also, API

functions for graphs/slots are used for object manipulation.

Thus, changes that were actually performed from one ver-

sion to another could be easily reconstructed by pairwise

comparisons of versions without dealing with sequences of

actual operations explicitly. On the other hand, the princi-

ple of our three-way structure-oriented merging algorithm

is to analyze the presence and absence of nodes/edges and

the changes of associated attribute tables in three involved

versions. The algorithm is based on case scenario analysis.

Product Model: Each engineering product might have

its own specification. The configurable product model in

our framework (see Figure 1) is able to input specifica-

tions for different data product models (i.e. the modeling

of different types of product), and automatically generate

CM code for the corresponding types of objects and struc-

tures. Our current implementation partially supports the

following types of specifications: 1) simplified EXPRESS

schemas [13] for mechanical/civil engineering data objects,

2) Verilog specifications for hardware software co-design of

embedded computing systems, 3) xADL schemas, XML-

based architectural description language schemas [4] for

software architectural design, and 4) XML specifications

of UML diagrams. For multidisciplinary engineering prod-

ucts, multiple product model’s specifications can be simul-

taneously used. Specifications can contain both object type

definitions and instances of particular configurations.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Experience: Our CM infrastructure and tools are avail-

able both as an Eclipse plugin and a separate application.

From the newly generated code and our CM infrastruc-

ture, the novel CM system can be built and then used in

the corresponding editing/design environment. To experi-

ment with our methods, we have built a prototype of a uni-

fied PDM/CM system for hardware software co-design with

Verilog. It has illustrated the benefits of our unified model.

3 Related Work

Several sources can be served as excellent surveys on

SCM [2, 3, 12] and PDM systems [1, 3]. Existing SCM

systems have no or little integration and interoperation ca-

pabilities with PDM [3]. On the other hand, the awareness

of software development in many PDM systems is still very

low [3]. Similarities and differences between them have

been systematically analyzed [10, 16]. In general, there are

three possibilities for achieving the interoperability between

PDM and SCM: no integration, loose integration, and full
integration (or total unification) [3]. With no integration,

manual intervention and procedures must be carefully iden-

tified in order to enable information exchange. Inconsisten-

cies might occur and go unnoticed due to the disconnection.

Loose integration approach is based on relatively inde-

pendent tools and well-defined interfaces [3]. The crucial

elements are individual APIs of PDM and SCM, and a set

of interoperability functions and synchronization monitors.

Crnkovic et al [3] have reported a case study of a loose in-

tegration of eMatrix [6] and ClearCase [11]. This approach

potentially creates data inconsistency when a change in

ClearCase has not yet been registered in eMatrix. Another

example of a loose integration is between Metaphase [14]

and ClearCase. The integration architecture is based on a

data exchange architecture. The authors also conducted six

other case studies from different companies [3]. Their con-

clusion is that integration solutions are largely ad hoc, un-

satisfactory, and complex. Unnecessary complexity is of-

ten a result of the incompatibility between PDM and SCM

tools. The points are concurred by Elkhoury [8].

Full integration implies the design and implementation

of new unified CM systems. Crnkovic et al [3] suggested

an ideal full integration model, which has a common repos-

itory, a common information model, a common user inter-

face, and individual business models with different services.

Estublier et al [10] introduced a full integration framework

with common product, evolution, and process models. Un-

fortunately, no detailed design, implementation is provided.

4 Conclusions

Nowadays, modern product development involves sev-

eral types of artifacts, placing new demands on a unified

CM model of PDM and SCM. This paper shows that PDM

and SCM concepts, models, techniques are mature enough

to achieve a full integration model. Our solution is based

on the following ideas: modeling of products in term of

objects, fine-grained CM for objects, and enabling version

branching and structural differencing/merging of objects.

Key contributions include a unified CM model, method,

and configurable tools that take advantage of strengths from

both domains and allow for the automatic generation of

CM code supporting for multidisciplinary engineering ar-

eas. Although our approach requires efforts to implement a

new CM system, our code generation mechanism offers big

help. Future work includes a more customizable process

model and a better view-based selection mechanism.

References

[1] CIMdata, Inc. http://www.cimdata.com/.
[2] R. Conradi and B. Westfechtel. Version models for soft-

ware configuration management. ACM Computing Surveys
(CSUR), 30(2):232–282, 1998.

[3] I. Crnkovic, U. Asklund, and A. P. Dahlqvist. Implement-
ing and Integrating Product Data Management and Software
Configuration Management. Artech House Publishers, 2003.

[4] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. An infras-

tructure for the rapid development of XML-based architec-

ture description languages. In Proceedings of the Int. Confer-
ence on Software Engineering (ICSE’02). ACM Press, 2002.

[5] Document Object Model. http://www.w3.org/dom/.
[6] MatrixOne Inc. http://www.matrixone.com/.
[7] K. McIntosh. Engineering Data Management - A Guide to

Successful Implementation. McGraw-Hill, 1995.
[8] J. El-khoury. Model data management: towards a common

solution for PDM/SCM systems. In Proceedings of the 12th
Software Configuration Management Workshop (SCM-12),
pages 17-32. ACM Press, 2005.

[9] J. Estublier. A configuration manager: The Adele database of

programs. In Proceedings of the Workshop on Software Engi-
neering Environments for Programming-in-the-Large, 1985.

[10] J. Estublier, J.-M. Favre, and P. Morat. Toward SCM / PDM

Integration? In Proceedings of Software Configuration Man-
agement Workshop (SCM-8). Springer Verlag, 1998.

[11] D. Leblang. The CM challenge: Configuration management

that works. Configuration Management, 2, 1994.
[12] A. Leon. A Guide to Software Configuration Management.

Artech House Publishers, 2000.
[13] Product Data Representation & Exchange, ISO-DIS-10303.
[14] SDRC Metaphase. http://www.sdrc.com/metaphase.
[15] T. N. Nguyen, E. Munson, J. Boyland, and C. Thao. An

Infrastructure for Development of Object-Oriented, Multi-

level Configuration Management Services. In Proceedings of
the 27th International Conference on Software Engineering
(ICSE 2005), pages 215-224. ACM Press, 2005.

[16] B. Westfechtel and R. Conradi. Software Configuration

Management & Engineering Data Management: Differences

and Similarities. In Proceedings of Software Configuration
Management Workshop (SCM-8). Springer Verlag, 1998.

[17] A. Zeller. Versioning System Models through Description

Logic. In Proceedings of Software Configuration Manage-
ment Workshop (SCM-8). Springer Verlag, 1998.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

