An Efficient Version Model of Software Diagrams

Jungkyu Rho and Chisu Wu
Department of Computer Science
Seoul National University, Seoul, 151-742, Korea
{jkrho, wuchisu}@selab.snu.ac.kr

Abstract the revision history of a diagram, nodes and edges are
created and deleted frequently and deleting a node causes
Various types of diagrams are used to represent thedeletion of the edges connected to the node. Therefore,
design of software systems. During the design phasethose characteristics should be considered in delta
versions of a diagram may be created like other designmanagement. Third, diagrams contain graphic information,
documents and source code, and it is necessary to managaich as position and size of a node, to represent software
them efficiently. However, traditional configuration design information. Therefore, it is desirable to distinguish
management systems and some object-oriented databasikee changes of design information from those of graphic
management systems that provide object versioning arénformation. Finally, it is necessary to provide a merging
not suitable for managing versions of a diagram. In thistool for software diagrams because structure-oriented
paper, we propose an efficient version model of softwaremerging tools [6] [10] do not reflect the characteristics of
diagrams. This model reflects the common characteristicdiagrams.
and structure of software diagrams, and revisions of a Traditional configuration management systems and
diagram are managed by operation delta and objectsome of the OODBMSs support version management of
visibility. A merge model for versions of a diagram is also composite objects. If all versions of an object are referred
presented at the end of this paper. by the same relationship, then the relationshigeiseric
On the other hands, if each version is bound to a specific
relationship, then the relationship mound A bound
1 Introduction configuration is a composite object that has bound
relationships to its components. When an object is updated
During the analysis and design phase of softwarein a bound configuration, a new version of the object and a
development, various types of diagrams are used. Fonew reference to the version are created. For example, a
example, use-case diagrams and class diagrams of UMLlypical diagram is presented igure 1(a) and its fine-
are commonly used. Generally, software diagrams consisgrained data model representation is illustrate@igare
of nodes, edges, and attributes. Nodes are conceptualb). Diagram, node, and edge objects have bound
software design entities and edges represent relationshipglationships to each other. Suppose an attribute whs
between nodes. Attributes are used to represent thenodified. Thenn/, a new version ofi, should be created
properties of nodes and edges. For example, a clasandD’, a new version oD, should haven’ instead ofn,.
diagram may have class and package nodes anth addition, unchanged edgeshould be also modified to
association and generalization edges. Nodes and edgémve a reference ta, in D’. Thereforee' should be
may have attributes, such as name, role name, andreated and,’, e’, andn,’ should be created subsequently.
cardinality. As a result, a change in one object was propagated to the
During the software design phase, versions of aedge-connected subdiagram,(n, n, and their edges).
diagram are created like other software engineeringTherefore bound configurations are not suitable for fine-
documents. For efficient version management of diagramsgrained diagram version management.
the following requirements should be satisfied. First, fine- Existing software configuration management systems
grained data model where nodes and edges are individuaind software engineering environments are inadequate for
objects should be used. With fine-grained data, toolfine-grained diagram version management. RevisionTree
construction becomes easier, and detailed relationshipserver [6] supports revision control for fine-grained
between different documents and different parts of thehierarchically structured documents, such as programs that
same document are available [5]. Second, efficientconsist of classes and functions. However, it supports only
diagram delta management should be supported. Durin@pound configurations. CoMa [11] manages configuration

of engineering design documents, but CoMa also supportglelta because editing operations are used as delta. We

only bound configurations. PCTE [3] provides version provide a merge model for versions of a diagram and

management of composite objects. However, objects inmplemented a prototype of Diagram Version Management

PCTE are supposed to be coarse-grained objects and 8ystem (DIVERS).

supports only bound configurations. This paper is organized as follows. Section 2
introduces our fine-grained diagram model and version
model. Section 3 describes the storage model of DIVERS

in detail. Section 4 briefly explains our diagram merge
model and Section 5 presents a conclusion.
(a) A typical diagram
2 \Version Model

2.1 Diagram Model

Diagrams are important ways to represent the software
design. Diagrams contain not only design information
related to the software design, but also auxiliary
information, like diagram layouts. We classified the
information contained in diagrams tiesign information,

- guasi-design informatioandgraphic information Design
propagated information is directly related to the software design. For
changes example, class definitions and associations between
classes are the design information of class diagrams.
Quasi-design information does not represent the software

intended
change

Q diagram <—> reference design itself, but it describes the design. For example,

O node <> modified reference descriptio_n of clas_s de_finition is quasi-design informatiqn.
Graphic information is a means to represent design

L] edge information in a diagram. For example, graphic

(b) Fine-grained data model representation information includes shapes, positions, and sizes of nodes
and edges.

Figure 1 Problem of bound configuration Our diagram model consists nbdes graphic nodes

edges attributes anddiagrams A diagram has nodes as

Some OODBMSs support generic configuration. its children, a node has graphic nodes and set-valued
However, those are not suitable for configuration attributes as its children, and a graphic node has edges as
management of fine-grained objects where component#ts children. A node may have atomic attributes and set-
are created and deleted frequently. In ORION model,valued attributes. A graphic node is the graphic
generic objects have high storage overhead. Thereforeepresentation of a node, and has graphic attributes, such
coarse-grained objects should be used in order to limitas position, size, and color. Two or more graphic nodes
storage overhead of generic object [1]. Database version afepresenting one node may appear in a diagram to enhance
O, [2] relives storage overhead of generic objects, but it isreadability. Existence of a graphic node depends on the
not suitable for managing frequent creation and deletion ofexistence of its node. An edge may have atomic attributes.
component objects. GOODSTEP [4] extendedwvith the An edge connects its source and destination graphic nodes.
facilities for software development environments. Existence of an edge depends on the existence of its parent
However, it does not provide improved storage graphic nodes. Attributes are classified into set-valued
management for versioning of fine-grained data. attributes and atomic attributes. Existence of a set-valued

In this paper, we propose an efficient diagram versionattribute depends on the existence of its parent node. A
management model that refleaig facts that software diagram is a composite object that consists of nodes,
design information is represented by means of graphic graphic nodes, edges, and set-valued objects. A node can
information and the structure of software diagrams expand to another diagram. Our diagram model is defined
consists of nodes and edges. It provides efficient storage as follows.
management and retrieval of revisions of a diagram
through operation delta and object visibility. Furthermore,
our model has an advantage that it is not necessary to
compare a new revision with the previous one to extract

diagram= N,

node =(n, node_typenode_nameA , A,, QA, G,)
graphic node g, GA, E,)

edge= (e edge_typeA, QA, GA)

set-valued attribute (a, attr_type valug version is design equivalent to the previous version. Later,
when they retrieve the version, it is desirable to inform
them that the version is design equivalent to the
predecessor version.

whereN, is a set of nodes, amds a node identifier within
a diagram. Node has its typapde type and name,
node_nameA, A,, QA, and G, are sets of atomic
attributes, set-valued attributes, quasi-design attributes,

and graphic nodes, respectivaly= (n, GN) is a graphic Table 1 Edit operations

node identifier andsN distinguishes a graphic node from | node create(, node_typenode_namg

those belong to the same nod&4 is a set of graphic deletef)

attributes, andg,, is a set of edge® = (g,, 9,, EN) is an graphic node | creatg(initial values of graphic attributes),
edge identifier andEN distinguishes an edge from those deleteg)

belong to the same parent graphic nodes. Edge has its typ@dge create{ edge_typeinitial values of graphic|
edge_type and A, QA, and GA are sets of atomic attributes), deletef

attributes, quasi-design attributes, and graphic attributes,stomic update, attr_nameattr_value,
respectivelya = (n, AN) is a set-valued attribute identifier | attribute updateg, attr_nameattr_value,

and AN distinguishes a set-valued attribute from those update¢, attr_nameattr_valug

belong to the same node. Set-valued attribute has its typeget-valued created, attr_type attr_valu),

attr_type and valueyalue attribute deletef), updateg, attr_valug

To distinguish design information from other
information, the design view of a diagram is defined as |5 our work, diagram deltax = (AD, AQ, AG) is

follows. provided as documentation, wherD, AQ, and AG
design node = (d, A,, A,,,) denote design delta, quasi-design delta, and graphic delta,
design edge = (d,, d,, A,) respectively. Design delta consists of the operations that
set-valued attribute = (d , attr_type, value) change the design view of a diagram, e.g. creation and

_) deletion of nodes and edges, change of node name, and
whered = (node_namgnode_typgis a design key of node. change of design attributes. Quasi-design delta contains
We say that two diagrams aceesign equivalentf the the operations that change quasi-design attributes, such as
design views of the two diagrams are equivalent. descriptions and comments on design information.

We imposed two integrity rules on the diagram dataGraphic delta contains the operations that change graphic
model. First, a child object should be deleted when itSattributes, such as creation of a new graphic node, change
parent object is deleted. For example, an edge should bgs graphic node size, and change of edge position. Some
deleted if the source or destination graphic node of theoperations change both design and graphic information.

nodes that belong to the same diagram and have the samgaphic attributes.

type. However, it is possible to change node name unless Relationship between an expanding node and its
the uniqueness is violated in the current state of a diagramexpanded diagram is either bound or generic. When a new
] version of a diagram is created, the change is propagated

2.2 Version Model to its expanding node only if bound relationship exists and
the design delta of the diagram is not nil. In this case, a

When a user edits a diagram, a number of operationgew version of the higher level diagram should be created.
are applied to change the state of the diagram. Those are

divided into structure operations and attribute operations

listed inTable 1. Structure operations include creation and D design equivalence plane
deletion of nodes, graphic nodes, and edges. Attribute o
operations are divided into atomic and set-valued attribute R \ 4,=(D1,G1.Q)
operations. Atomic attribute operations update the Lo T A=(nil Gynil)
attributes contained in nodes, graphic nodes, and edges. Vi A=(D,G,Q)
Set-valued attribute operations include creation, deletion, "2 Sl P
and update. / A=(nilnil,Qy)
As described above, diagrams contain design and G
graphic information, and optionally have quasi-design Figure 2 Design equivalence plane

information. Often, a new version of a diagram may differ

from the previous version only in graphic or quasi-design fjgyre 2 shows an example of diagram delta and
information. For example, users may update only graphicjesign equivalence planes. If the design delta of a new
attributes to create a new version. In this case, the neWersijon is nil, then the version and the predecessor version

belong to the same design equivalence plan€igure 2, 2. Repeated update operations on an attribute can be
v, andv, are design equivalent tg andv,, respectively. reduced to the last operation.
Design Version [8] introduced equivalent design version of
composite objects. However, it does T‘Ot explicitly provide not contain operations on the objects that were deleted
delta. In EXTRA-V [9] model, an attribute of a class can . L L
A Xeither explicitly or implicitly.
be declared as a dimension of the version space. But it is
. ; L Create operations are recorded in operation lists
not possible to declare a group of attributes from distinct_ . . e
) . . vvflthout attribute value specifications, e.gn)c@nd update
classes as one dimension (e.g. graphic). The advantage 0 . S
X osperatlons are recorded in inverse form, For example,
our approach is that users are able to know the change X .
. o . . ¥“When the value of attribui of noden is v, and updatey,
occurred in derivation of a version. Moreover, design . . .
. . S . a, v,) is applied, the value af will be set tov, and uf, a,
equivalent versions can be easily identified from the delta. . . -
v,) will be recorded in the operation list.
Operation lists are separately stored in order to reduce
the searching time for operation delta to retrieve previous
versions. The operation list of tlketh revision consists of

In this section, we present our - version stqrag_eopk and sets 0OP, , OP, , andOP, . OP, contains creation
management model. Generally, version storage maintains n 9 y

: :) . . and deletion of nodes and edg&R, , contains creation
either the copies of all versions or one version with delta. "

DIVERS is the latter. It maintains the latest revision andand. deletion of the graphic n_odes and the s_et-valued
! . . o attributes of node. It also contains update operations on
the operation delta applied to derive each revision.

Updating an object does not cause creation of a neV\t/he attributes of noda. OR contains update operations

version of the object. In contrast, objects are shareuo net:]aeti:rfglgﬁt?hsec;ftt?iﬁ)tzlsco?%%jggpke contains update
between revisions. As a result, all references and’P
composition relationships between objects are considere
as generic relationships. Each object maintains its lates
state and the operations applied to the object are recorded . . .
as backward delta. To retrieve an old revision, operation _C_:omponent_ obje_cps_ are included or excluded in a
. . L revision according tweisibility. After an object was created,
delta is applied to the latest revision in reverse order.

. it is visible from its parent object. Later, after the object is
Objects are not shared between branches whereas those oo S . .

L .deleted, it will be invisible from its parent object. An

are shared between revisions. When a new branch is

created, all objects in the branch are copied. Each brancRbJeCt is included in a revision only if it is visible from the

o . o) root of composition hierarchy, the diagram object.
maintains the state of its latest revision and operation delta]’herefore a revision of a diagram is composed of the

nodes that are visible from the diagram object, the graphic
nodes and the set-valued attributes that are visible from the
visible nodes, and the edges that are visible from the

Each_ revision has thaperation listthat was applied to visible graphic nodes. Object visibility differs from delta
the previous revision to produce that revision, and each .

branch has a set of operation lists for all of its revisions.VISIbIIIty of Change-Oriented Versioning [7], where a

Operation lists must bealid andminimal in order to be desired version is constructed by applying visible delta to

used as operation delta. The valid operation list satisfie%he baseline.
P ’ P To define object visibility, the following terms must be

the following rules. defined first.

In other words, the valid and minimal operation list does

3 Version Storage Management

.2 Object Visibility

3.1 Operation Lists

1. Object identifiers are unique throughout the revision
history. Even if an object was removed, reusing its
identifier is not allowed.

- N is a set of the nodes that were created throughout the
revision history of a diagram, regardless of visibility.

2. Neither operations on the objects removed in the N, is a set of the nodes that are visible from the diagram

. - . . object of the latest revision.
previous revision nor operations on their descendants - . -
are allowed. - G, is a set of the graphic nodes that are visible from the

3. If object deletion exists in the operation list, neither visible node_s, which are the e!e_mentsl WG, is a set
. . . . of the graphic nodes that are visible from nade
operations on the object nor operations on its

descendants can appear after the deletion operation. E, is a set of the edges that are visible from the visible
' graphic nodes, which are the element&pfE, is a set

The minimal operation list can be constructed from the of the edges that are visible from graphic ngde
valid operation list by applying the following rules. - A, is a set of the set-valued attributes that are visible from
the visible nodes, which are the elementdNpfA,, is a

1. It object deletion exists, the preceding operations on set of the set-valued attributes that are visible from node

that object or its descendant objects can be removed.

To delete objects, the delete algorithmg&igure 3 are

applied. The algorithms make objects invisible from their

parents. To retrieve the-th revision, the following
visibility definitions are used.

delete_node(node)
begin

N;:=N,—~{n};

for VgeG,, delete_edge_ aff;
end

delete_graphic_nodg(graphic node)

begin
n:=g.n;
G,:=G,— {gk
delete_edge_dif;
end

delete_attribute(set-valued attribute)
begin
n=a.n;

A=A~ {ah

end

delete_edge_aodf graphic node)
begin
for VeeE
begin
if g=eg, thenh:=eg,
elseh:=e.g,;
th::th_ {E};
end
end

delete_edge&{ edge)
begin
g=eg;

Figure 3 Delete algorithms

Node visibility

SupposeCi is a set of the nodes created &nds a set
of the nodes deleted between ikéth revision and the
latest revision. TheRi andDi are obtained by

Ci={n|c(n)e Uf{:i+l OPx}

Di={n|d(n) €., OPK}
wherel is the latest revision numbaea(n) is creation of
noden, d(n) is deletion of nod@, andOP, is the operation
list of thek-th revision. Node visibility in théth revision,

V.(n) and a set of the nodes included in itle revision,N,
are

if ne(NolUD)-Ci

false otherwise

true
Vi(n) = {

Ni={n|Vin)}
respectively, where 4i <.

Graphic node visibility

SupposeCG, is a set of the graphic nodes created and
DG, is a set of the graphic nodes deleted between the
i+1th revision and the latest revision among the graphic
nodes contained in node. Then CG, and DG, are
obtained by

CGin=1{g| c(g) € Uiy, OPior}

DGin={g | d(g) € Uiy, OPin}

wherec(g) is creation of graphic nodg d(g) is deletion
of graphic nodeg, andOP, is the operation list of thieth
revision contained in node In thei-th revision, visibility
of the graphic nodes contained in naode

frue
Vin(g) =

false otherwise

if g€ (GOnUDGin)—CGin

and a set of the visible graphic nodes contained in node
is
Gin={g |Vin(g)}

And a set of the graphic nodes included inittterevision
is

Gi =Uyen Gin

Edge visibility

SupposeE',is a set of the edges that are visible from
the graphic nodes included in thth revision, ancCE, is a
set of the edges created abd, is a set of the edges
deleted between thie-1th revision and the latest revision.
ThenE',, CE, andDE, are obtained by

E'i= Upec: Eog
CEi={e| c(e) € Ujeys OPK}
DEi ={e| d(e) € U—is, OPI}
wherec(e) andd(e) are creation and deletion of edge
respectively. Edge visibility in the theh revision is

true
Vi(e) = {

false otherwise

if ee(E'"UDE)-CEi

and a set of the edges included initlle revision is
Ei={e|Vi(e)}

Set-valued attribute visibility
SupposeCA, is a set of the attributes created @y,
is a set of the attributes deleted betweerniti¢h revision
and the latest revision among the set-valued attributes

contained in noda. ThenCA,, andDA,, are obtained by that all operation lists are valid.

CAin={a|c(a) € Up_s,, OPin} First, all nodes irN were created once and might be
. deleted or not, regardless of their visibility in the latest
Ddin={a|d(a) € Uy, OPior} revision. Therefore all nodes includedNirare divided into

wherec(a) andd(a) are creation and deletion of set-valued the five categories listed ifable 2.

tar:glts)gfvzylurs;ﬁti Tlt\ftlgs Icnort:;rt]g dr?:]”i';;; visibility of n, : created and deleted before thh revision.
n, : created before theth revision and deleted after the

true if ac(AonJ DAin)—CAin th revision. _ N
Vin(a) : created before theth revision and not deleted.

>

false otherwise

n, : created and deleted after ki revision.
n, : created after thieth revision and not deleted.
and a set of the set-valued attributes contained in mazle
Ain={a| Vin(a)} revision 1 op revision 2 revision 3

And a set of the set-valued attributes included inittie
revision is
Ai = Upey, Ain

In addition, attribute value in thieth revision is decided
by the earliest (inverse) update of the attribute between the
i+1th revision and the latest revision.

Figure 4(a) shows three revisions of a typical diagram.
The operations between two revisions are applied to derive revision 1 revision 2
the successor revision. Thg stageg of the_. internal 2 d(n,), d(e,). c(n,). C(e3)
representation after each revision are illustrateBigore
4(b). In derivation of revision 2, deletion of makesn,
invisible and also makes invisible fromg,, and deletion
of e, makese, invisible from its parentsg, and g,. In
derivation of revision 3, deletion @& makese, invisible
from its parents, and deletion @fmakesa, invisible from
n, Suppose a user wants to retrieve revision 1 after
creation of revision 3. Then the internal representation of
revision 3 is used to obtain revision 1. The result is as
follows. revision 3 F2:d(n)), d(ey), o(ny), c(ey)

3 d(e,), c(ny), c(e,)
N,={n,n,n,n} C={n,n}D={n}N={n,n,n} ‘
1_{91} Gonz {gz} Go 3_{93}

C(n4) s (gs)
DECOHE
cle;) d(a))

(a) Revisions of a diagram

oL <>
d(ey) c(n)

CGln = andDG,n = for Vne N,,

n={g} Gn ={gz}Gln3‘{93}G‘{gl,gz,gs}, Q
091—{e}E092 =0,E,={e}
CEl{s,A}DE—{z,S}E{Pz} A

An=JforVvne N, CAn, =, DAn, =
CAn, =<, DANn, =g, CAn, =, DAn, = { a}, Le

An =9, An =0, An,={a} andA ={a}. ,
8 diagram O set-valued attribute
AN

3.3 Analysis node — visible relationship
. . graphic node - invisible relationship
In this section, we demonstrate the correctness of the
visibility definitions and compare our model with database
version of O, [2].

edge . operation list

(b) Internal representation
Correctness of the ViSibility definitions Figure 4 An examp|e of revision history
We examine the correctness of node and edge

visibility in this section. The visibility of graphic node and By the delete algorithms iRigure 3, n,, n,, andn, are not
set-valued attribute is similar to node visibility. We assume included in the latest revision. According to the above

definitions, N, containsn, andn,, D, containsn,andn,, C update, create, and delete operations. First, when an
containsn, andn,. ThereforeN, containsn, andn,, and the attribute of an object is updated, DIVERS adds the update
definition of N, produces the nodes included in thth operation to the operation list. In contrast, €eates a
revision. new version of the object and updates the version stamp
Second, all child edges of the graphic nodes includedor the object unless the object is newly created in the
in thei-th revision are divided into the 7 categories listed same revision. Second, when a new object is created, the
in Table 3. Since the edge categories fr@nto e, are references of its parent objects are updated. For example,
similar to the node categories, it is sufficient to deffne node creation causes update of the diagram object, and
ande,. edge creation causes update of the parent graphic nodes.
O, updates the version stamp and carries out the above
update process for the parent objects. Therefore additional
object creation and version stamp update may be required.
However, DIVERS just updates the parent objects and
adds the create operation to the operation list. Third, when
By the delete algorithms imigure 3, €, e, €, €, e, and an object is deleted, its parent objects are also updated.
the parent graphic nodes ef ande, are not included in Deletion of an edge is similar to creation of an edge. But
the latest revision. Note thaf ande, are visible from one deletion of a node causes deletion of its edges and update
of their parent graphic nodes. According to the aboveof the nodes connected with the edges. In this cage, O

e, : created before thieth revision and at least one of its
ancestors was deleted after tth revision.

e, : created after theth revision and at least one of its
ancestors was deleted after tth revision.

definitions, E', containse,, e,, e, ande,, CE, containse,, e, updates the version stamp and carries out the update
ande,, DE, containse, ande,. ThereforeE, contains ane,, process for the diagram object and the connected nodes.
e, ande, and the definition off produces the edges But DIVERS adds the delete operation to the operation list
included in the-th revision. and just updates the diagram object and the nodes. In
DIVERS, the time to add an operation to a operation list is
Table 2 Node categories O(1) regardless of the number of revisionss€arches the
version stamps to update them. The searching time is
n n n n n . . .
P —oP L 2 4 4 5 proportional to the number of changes, which is
1T ;(n1) c(n) | cn) proportional to the number of revisions in average.
- — (n,) Even if a few attributes are updated, €pies the
I-th revision | x 0 0 x x whole object. Moreover, creation and deletion of objects
OR..~OR, d(n,) c(n) | <ny cause implicit update, and it may require copying the
— d(n,) objects. However, DIVERS uses delta for changed objects
latest revision| _ x X ° X o and does not require additional storage overhead for
o :included x : not included implicit update.
] DIVERS maintains the latest revision of each branch.
Table 3 Edge categories To retrieve an old revision, the definition of visibility is
elelelelelele used. The time complexity of the visibility_ definition is
OP-~OP oe)]| ce) [ce) oe) pro_pt_:rnonal to the numt_Je_r of the operations from t_he
de) revision to the latest revision. DIVERS stores operation

lists separately to localize the scope of operation searching.

i-th revision | x 0 0 X X 0 X . -
In contrast, Q searches the version stamps to obtain a

OP,~OP d(e c(e) | c d C - . . - .
i ! ©) dge:)) (&) |d(p) dgg specific database version. The searching time for version
— - stamps is also proportional to the number of the operations,
latest revision| x X 0 X 0 ° . L .
- X but it is larger than that of DIVERS because creation and
o :included x . not included

deletion of objects in Qmay cause another update

 : not included, but visible from one of its parent graphic nodes .
operations.

p, : one of the parent graphic nodes (or the ancestor nodes) of

Comparison to O, version management 4 Merge Model

We compare our model, DIVERS with database Our merge model differs from structure-oriented

version of Q [2] because Dis considered as the best merge [10] in two aspects. First, graphic information is

candidate for versioning of the fine-grained diagram . . . ; X

o . ignored in merging two diagrams because it generally

model among existing OODBMSs. Comparisons are made . . .

. . . makes too much conflict. Second, assuming that deletion

in three aspects, operation processing, the storage . . . : .

. . . of the useless objects is easier than creation of the objects
requirements, and version retrieval.

. . . . that are not included, we chose a passive method that
Creation of a new version of a diagram includes

includes all possible objects. Instead, DIVERS informs a
user that some useless objects are included.

The 3-way merge rules for merging the two versions

originated from the base version are presentethbie 4.
Nodes are changed by update of their attributes, creatiofr]
of new edges, or changes of their edges, while edges are
changed by update of their attributes. The nodes of two
versions are merged by the rulesrable 4. When conflict
occurs, the rules for edges and set-valued attributes are
used to resolve the conflict between the two nodes. But
conflict in atomic attributes cannot be resolved without [9]
user interaction.

Table 4 3-way merge rules

vl v2 node edge| set-valued attribute
changed | not changed conflict vl (vR) vl (v2)
changed changed| conflict v1v2 vlv2

not changed deleted (v1) (v1 (vl)
changed deleted vl vl vl
created created | conflict v1v2 vlv2

vl :includes the object of vl

v1lv2 :includes both the objects of v1 and v2

(vl) :includes the object of v1, but advises users to exclude it

(6]

(10]

(11]

v1 (v2) : includes both the objects of v1 and v2, but advises users

to exclude the object of v2

5 Conclusion

In this paper, we proposed an efficient diagram

version model, which reflects the structure of software
diagrams and uses editing operations as delta. Based on
the model, a prototype of DIVERS was implemented on
top of ObjectStore. It can be implemented on top of any
DBMSs that do not provide object versioning since it does
not use the version management facilities of OODBMS.

We

plan to implement a diagram editor that provides

operations lists to DIVERS.

References

(1]
(2]

(3]
(4]

(5]

E. Bertino and L. Martino,Object-Oriented Database
SystemgAddison-Wesley, 1993.

W. Cellary and G. Jomier, “Consistency of Versions in
Object-Oriented DatabasesBuilding an Object-Oriented
Database System, The Story of, @2organ Kaufmann,
1992.

ECMA, Portable Common Tool Environmer(PCTE
Abstract SpecificatigrStandard ECMA-149, March 1995.
The GOODSTEP Team, “The GOODSTEP Project:
General Object-Oriented Database for Software
Engineering ProcessesRroceedings of the APSEC 94,
1994.

P. Lindsay, Y. Liu and O. Traynor, “A Generic Model for
Fine Grained Configuration Management Including
Version Control and Traceability”Proceedings of the
Australian Software Engineering Confere{éSWEC 9y,

September 1997.

B. Magnusson, U. Asklund, and S. Minor, “Fine-Grained
Revision Control for Collaborative Software Development”,
ACM SIGSOFT'93 - Symposium on the Foundations of
Software Engineerinddecember 1993.

B. P. Munch, Jens-Otto Larsen, B. Gulla, R. Conradi, and
Even-Andre Karlsson, “Uniform Versioning: The Change-
Oriented Model”, SCM-4: 4th International Workshop on
Software Configuration Management, May 1993.

R. Ramakrishnan and D. J. Ram, “Modeling Design
Versions”, Proceedings of the twenty-second international
Conference on Very Large Data BasBsptember 1996.

E. Sciore, “Version and Configuration Management in an
Object-Oriented Data Model”VLDB Journa)] Vol.3-1,
1994.

B. Westfechtel, “Structure-Oriented Merging of Revisions
of Software Documents”,SCM-3: 3rd International
Workshop on Software Configuration Megement1991.

B. Westfechtel, “A Graph-Based System for Managing
Configurations of Engineering Design Documents”,
International Journal of Software Engineering &
Knowledge Engineeringol. 6-4, 1996.

