
An Efficient Version Model of Software Diagrams

Jungkyu Rho and Chisu Wu
Department of Computer Science

Seoul National University, Seoul, 151-742, Korea
{jkrho, wuchisu}@selab.snu.ac.kr

Abstract

Various types of diagrams are used to represent the
design of software systems. During the design phase,
versions of a diagram may be created like other design
documents and source code, and it is necessary to manage
them efficiently. However, traditional configuration
management systems and some object-oriented database
management systems that provide object versioning are
not suitable for managing versions of a diagram. In this
paper, we propose an efficient version model of software
diagrams. This model reflects the common characteristics
and structure of software diagrams, and revisions of a
diagram are managed by operation delta and object
visibility. A merge model for versions of a diagram is also
presented at the end of this paper.

1 Introduction

During the analysis and design phase of software
development, various types of diagrams are used. For
example, use-case diagrams and class diagrams of UML
are commonly used. Generally, software diagrams consist
of nodes, edges, and attributes. Nodes are conceptual
software design entities and edges represent relationships
between nodes. Attributes are used to represent the
properties of nodes and edges. For example, a class
diagram may have class and package nodes and
association and generalization edges. Nodes and edges
may have attributes, such as name, role name, and
cardinality.

During the software design phase, versions of a
diagram are created like other software engineering
documents. For efficient version management of diagrams,
the following requirements should be satisfied. First, fine-
grained data model where nodes and edges are individual
objects should be used. With fine-grained data, tool
construction becomes easier, and detailed relationships
between different documents and different parts of the
same document are available [5]. Second, efficient
diagram delta management should be supported. During

the revision history of a diagram, nodes and edges are
created and deleted frequently and deleting a node causes
deletion of the edges connected to the node. Therefore,
those characteristics should be considered in delta
management. Third, diagrams contain graphic information,
such as position and size of a node, to represent software
design information. Therefore, it is desirable to distinguish
the changes of design information from those of graphic
information. Finally, it is necessary to provide a merging
tool for software diagrams because structure-oriented
merging tools [6] [10] do not reflect the characteristics of
diagrams.

Traditional configuration management systems and
some of the OODBMSs support version management of
composite objects. If all versions of an object are referred
by the same relationship, then the relationship is generic.
On the other hands, if each version is bound to a specific
relationship, then the relationship is bound. A bound
configuration is a composite object that has bound
relationships to its components. When an object is updated
in a bound configuration, a new version of the object and a
new reference to the version are created. For example, a
typical diagram is presented in Figure 1(a) and its fine-
grained data model representation is illustrated in Figure
1(b). Diagram, node, and edge objects have bound
relationships to each other. Suppose an attribute of n1 was
modified. Then n1c, a new version of n1, should be created
and Dc, a new version of D, should have n1c instead of n1.
In addition, unchanged edge e1 should be also modified to
have a reference to n1c in Dc. Therefore e1c should be
created and n2c, e2c, and n3c should be created subsequently.
As a result, a change in one object was propagated to the
edge-connected subdiagram (n1, n2, n3, and their edges).
Therefore bound configurations are not suitable for fine-
grained diagram version management.

Existing software configuration management systems
and software engineering environments are inadequate for
fine-grained diagram version management. RevisionTree
server [6] supports revision control for fine-grained
hierarchically structured documents, such as programs that
consist of classes and functions. However, it supports only
bound configurations. CoMa [11] manages configuration

of engineering design documents, but CoMa also supports
only bound configurations. PCTE [3] provides version
management of composite objects. However, objects in
PCTE are supposed to be coarse-grained objects and it
supports only bound configurations.

 n1 n2 n3 n4

e2e1

(a) A typical diagram

D

 e1
 n1 n2 e2

 n3

 D’

 n1’ e1’ n2’ e2’ n3’

 n4

diagram

edge

node

intended
change

propagated
changes

reference

modified reference

(b) Fine-grained data model representation

Figure 1 Problem of bound configuration

Some OODBMSs support generic configuration.
However, those are not suitable for configuration
management of fine-grained objects where components
are created and deleted frequently. In ORION model,
generic objects have high storage overhead. Therefore
coarse-grained objects should be used in order to limit
storage overhead of generic object [1]. Database version of
O2 [2] relives storage overhead of generic objects, but it is
not suitable for managing frequent creation and deletion of
component objects. GOODSTEP [4] extended O2 with the
facilities for software development environments.
However, it does not provide improved storage
management for versioning of fine-grained data.

In this paper, we propose an efficient diagram version
management model that reflects WKH IDFWV WKDW VRIWZDUH

GHVLJQ LQIRUPDWLRQ LV UHSUHVHQWHG E\ PHDQV RI JUDSKLF

LQIRUPDWLRQ DQG WKH VWUXFWXUH RI VRIWZDUH GLDJUDPV

FRQVLVWV RI QRGHV DQG HGJHV� ,W SURYLGHV HIILFLHQW VWRUDJH

PDQDJHPHQW DQG UHWULHYDO RI UHYLVLRQV RI D GLDJUDP

WKURXJK RSHUDWLRQ GHOWD DQG REMHFW YLVLELOLW\�)XUWKHUPRUH�

RXU PRGHO KDV DQ DGYDQWDJH WKDW LW LV QRW QHFHVVDU\ WR

FRPSDUH D QHZ UHYLVLRQ ZLWK WKH SUHYLRXV RQH WR H[WUDFW

GHOWD EHFDXVH HGLWLQJ RSHUDWLRQV DUH XVHG DV GHOWD� We
provide a merge model for versions of a diagram and
implemented a prototype of Diagram Version Management
System (DIVERS).

This paper is organized as follows. Section 2
introduces our fine-grained diagram model and version
model. Section 3 describes the storage model of DIVERS
in detail. Section 4 briefly explains our diagram merge
model and Section 5 presents a conclusion.

2 Version Model

2.1 Diagram Model

Diagrams are important ways to represent the software
design. Diagrams contain not only design information
related to the software design, but also auxiliary
information, like diagram layouts. We classified the
information contained in diagrams to design information,
quasi-design information and graphic information. Design
information is directly related to the software design. For
example, class definitions and associations between
classes are the design information of class diagrams.
Quasi-design information does not represent the software
design itself, but it describes the design. For example,
description of class definition is quasi-design information.
Graphic information is a means to represent design
information in a diagram. For example, graphic
information includes shapes, positions, and sizes of nodes
and edges.

Our diagram model consists of nodes, graphic nodes,
edges, attributes, and diagrams. A diagram has nodes as
its children, a node has graphic nodes and set-valued
attributes as its children, and a graphic node has edges as
its children. A node may have atomic attributes and set-
valued attributes. A graphic node is the graphic
representation of a node, and has graphic attributes, such
as position, size, and color. Two or more graphic nodes
representing one node may appear in a diagram to enhance
readability. Existence of a graphic node depends on the
existence of its node. An edge may have atomic attributes.
An edge connects its source and destination graphic nodes.
Existence of an edge depends on the existence of its parent
graphic nodes. Attributes are classified into set-valued
attributes and atomic attributes. Existence of a set-valued
attribute depends on the existence of its parent node. A
diagram is a composite object that consists of nodes,
graphic nodes, edges, and set-valued objects. A node can
expand to another diagram. Our diagram model is defined
as follows.

diagram = N0

node = (n, node_type, node_name, An, A0n, QAn, G0n)
graphic node = (g, GAg, E0g)
edge = (e, edge_type, Ae, QAe, GAe)

set-valued attribute = (a, attr_type, value)

where N0 is a set of nodes, and n is a node identifier within
a diagram. Node has its type, node_type, and name,
node_name. An, A0n, QAn, and G0n are sets of atomic
attributes, set-valued attributes, quasi-design attributes,
and graphic nodes, respectively. g = (n, GN) is a graphic
node identifier and GN distinguishes a graphic node from
those belong to the same node. GAg is a set of graphic
attributes, and E0g is a set of edges. e = (g1, g2, EN) is an
edge identifier and EN distinguishes an edge from those
belong to the same parent graphic nodes. Edge has its type,
edge_type, and Ae, QAe, and GAe are sets of atomic
attributes, quasi-design attributes, and graphic attributes,
respectively. a = (n, AN) is a set-valued attribute identifier
and AN distinguishes a set-valued attribute from those
belong to the same node. Set-valued attribute has its type,
attr_type, and value, value.

To distinguish design information from other
information, the design view of a diagram is defined as
follows.

GHVLJQ QRGH �G� $
Q
� $

�Q
��

GHVLJQ HGJH �G
�
� G

�
� $

H
�

VHW�YDOXHG DWWULEXWH �G � DWWUBW\SH� YDOXH�

where d = (node_name, node_type) is a design key of node.
We say that two diagrams are design equivalent if the
design views of the two diagrams are equivalent.

We imposed two integrity rules on the diagram data
model. First, a child object should be deleted when its
parent object is deleted. For example, an edge should be
deleted if the source or destination graphic node of the
edge is deleted. Second, node names are unique within the
nodes that belong to the same diagram and have the same
type. However, it is possible to change node name unless
the uniqueness is violated in the current state of a diagram.

2.2 Version Model

When a user edits a diagram, a number of operations
are applied to change the state of the diagram. Those are
divided into structure operations and attribute operations
listed in Table 1. Structure operations include creation and
deletion of nodes, graphic nodes, and edges. Attribute
operations are divided into atomic and set-valued attribute
operations. Atomic attribute operations update the
attributes contained in nodes, graphic nodes, and edges.
Set-valued attribute operations include creation, deletion,
and update.

As described above, diagrams contain design and
graphic information, and optionally have quasi-design
information. Often, a new version of a diagram may differ
from the previous version only in graphic or quasi-design
information. For example, users may update only graphic
attributes to create a new version. In this case, the new

version is design equivalent to the previous version. Later,
when they retrieve the version, it is desirable to inform
them that the version is design equivalent to the
predecessor version.

Table 1 Edit operations

node create(n, node_type, node_name),
delete(n)

graphic node create(g, initial values of graphic attributes),
delete(g)

edge create(e, edge_type, initial values of graphic
attributes), delete(e)

atomic
attribute

update(n, attr_name, attr_value),
update(g, attr_name, attr_value),
update(e, attr_name, attr_value)

set-valued
attribute

create(a, attr_type, attr_value),
delete(a), update(a, attr_value)

In our work, diagram delta ' = ('D, 'Q, 'G) is
provided as documentation, where 'D, 'Q, and 'G
denote design delta, quasi-design delta, and graphic delta,
respectively. Design delta consists of the operations that
change the design view of a diagram, e.g. creation and
deletion of nodes and edges, change of node name, and
change of design attributes. Quasi-design delta contains
the operations that change quasi-design attributes, such as
descriptions and comments on design information.
Graphic delta contains the operations that change graphic
attributes, such as creation of a new graphic node, change
of graphic node size, and change of edge position. Some
operations change both design and graphic information.
For example, creation of an edge changes both design and
graphic attributes.

Relationship between an expanding node and its
expanded diagram is either bound or generic. When a new
version of a diagram is created, the change is propagated
to its expanding node only if bound relationship exists and
the design delta of the diagram is not nil. In this case, a
new version of the higher level diagram should be created.

D

G

Q

design equivalence plane

'1=(D1,G1,Q1)

'2=(nil,G2,nil)

'3=(D3,G3,Q3)

'4=(nil,nil,Q4)

v1

v2

v3 v4

Figure 2 Design equivalence plane

Figure 2 shows an example of diagram delta and
design equivalence planes. If the design delta of a new
version is nil, then the version and the predecessor version

belong to the same design equivalence plane. In Figure 2,
v1 and v3 are design equivalent to v2 and v4, respectively.
Design Version [8] introduced equivalent design version of
composite objects. However, it does not explicitly provide
delta. In EXTRA-V [9] model, an attribute of a class can
be declared as a dimension of the version space. But it is
not possible to declare a group of attributes from distinct
classes as one dimension (e.g. graphic). The advantage of
our approach is that users are able to know the changes
occurred in derivation of a version. Moreover, design
equivalent versions can be easily identified from the delta.

3 Version Storage Management

In this section, we present our version storage
management model. Generally, version storage maintains
either the copies of all versions or one version with delta.
DIVERS is the latter. It maintains the latest revision and
the operation delta applied to derive each revision.
Updating an object does not cause creation of a new
version of the object. In contrast, objects are shared
between revisions. As a result, all references and
composition relationships between objects are considered
as generic relationships. Each object maintains its latest
state and the operations applied to the object are recorded
as backward delta. To retrieve an old revision, operation
delta is applied to the latest revision in reverse order.
Objects are not shared between branches whereas those
are shared between revisions. When a new branch is
created, all objects in the branch are copied. Each branch
maintains the state of its latest revision and operation delta.

3.1 Operation Lists

Each revision has the operation list that was applied to
the previous revision to produce that revision, and each
branch has a set of operation lists for all of its revisions.
Operation lists must be valid and minimal in order to be
used as operation delta. The valid operation list satisfies
the following rules.

1. Object identifiers are unique throughout the revision
history. Even if an object was removed, reusing its
identifier is not allowed.

2. Neither operations on the objects removed in the
previous revision nor operations on their descendants
are allowed.

3. If object deletion exists in the operation list, neither
operations on the object nor operations on its
descendants can appear after the deletion operation.

The minimal operation list can be constructed from the
valid operation list by applying the following rules.

1. If object deletion exists, the preceding operations on
that object or its descendant objects can be removed.

2. Repeated update operations on an attribute can be
reduced to the last operation.

In other words, the valid and minimal operation list does
not contain operations on the objects that were deleted
either explicitly or implicitly.

Create operations are recorded in operation lists
without attribute value specifications, e.g. c(n), and update
operations are recorded in inverse form, For example,
when the value of attribute a of node n is v1 and update(n,
a, v2) is applied, the value of a will be set to v2 and u(n, a,
v1) will be recorded in the operation list.

Operation lists are separately stored in order to reduce
the searching time for operation delta to retrieve previous
versions. The operation list of the k-th revision consists of
OPk and sets of OPkn, OPkg, and OPke. OPk contains creation
and deletion of nodes and edges. OPkn contains creation
and deletion of the graphic nodes and the set-valued
attributes of node n. It also contains update operations on
the attributes of node n. OPkg contains update operations
on the attributes of graphic node g. OPke contains update
operations on the attributes of edge e.

3.2 Object Visibility

Component objects are included or excluded in a
revision according to visibility. After an object was created,
it is visible from its parent object. Later, after the object is
deleted, it will be invisible from its parent object. An
object is included in a revision only if it is visible from the
root of composition hierarchy, the diagram object.
Therefore a revision of a diagram is composed of the
nodes that are visible from the diagram object, the graphic
nodes and the set-valued attributes that are visible from the
visible nodes, and the edges that are visible from the
visible graphic nodes. Object visibility differs from delta
visibility of Change-Oriented Versioning [7], where a
desired version is constructed by applying visible delta to
the baseline.

To define object visibility, the following terms must be
defined first.

- N is a set of the nodes that were created throughout the
revision history of a diagram, regardless of visibility.

- N0 is a set of the nodes that are visible from the diagram
object of the latest revision.

- G0 is a set of the graphic nodes that are visible from the
visible nodes, which are the elements of N0. G0n is a set
of the graphic nodes that are visible from node n.

- E0 is a set of the edges that are visible from the visible
graphic nodes, which are the elements of G0. E0g is a set
of the edges that are visible from graphic node g.

- A0 is a set of the set-valued attributes that are visible from
the visible nodes, which are the elements of N0. A0n is a
set of the set-valued attributes that are visible from node

n.

To delete objects, the delete algorithms in Figure 3 are
applied. The algorithms make objects invisible from their
parents. To retrieve the i-th revision, the following
visibility definitions are used.

delete_node(n: node)
begin
 N0:=N0 – {n};
 for �g�G

0n delete_edge_of(g);
end

delete_graphic_node(g: graphic node)
begin
 n:=g.n;
 G

0n:=G
0n – {g};

 delete_edge_of(g);
end

delete_attribute(a: set-valued attribute)
begin
 n:=a.n;
 A

0n:=A
0n – {a};

end

delete_edge_of(g: graphic node)
begin
 for �e�E

0g

 begin
 if g = e.g1 then h:=e.g2

 else h:=e.g1;
 E

0h:=E
0h – {e};

 end
end

delete_edge(e: edge)
begin
 g:=e.g1;
 E

0g:=E
0g – {e};

 h:=e.g2;
 E

0h:=E
0h – {e};

end
Figure 3 Delete algorithms

Node visibility
Suppose Ci is a set of the nodes created and Di is a set

of the nodes deleted between the i+1th revision and the
latest revision. Then Ci and Di are obtained by

`��_^
��

O
LN NL 23QFQ&
�

�

`��_^
��

O
LN NL 23QGQ'
�

�

where l is the latest revision number, c(n) is creation of
node n, d(n) is deletion of node n, and OPk is the operation
list of the k-th revision. Node visibility in the i-th revision,
Vi(n) and a set of the nodes included in the i-th revision, Ni

are

°̄

°
®
­ ��

RWKHUZLVHIDOVH

&'1QLIWUXH
Q9

LL

L

��
��

� �

�`�_^ Q9Q1 LL

respectively, where 1 d i < l.

*UDSKLF QRGH YLVLELOLW\

Suppose CGin is a set of the graphic nodes created and
DGin is a set of the graphic nodes deleted between the
i+1th revision and the latest revision among the graphic
nodes contained in node n. Then CGin and DGin are
obtained by

`��_^
��

O
LN NQLQ 23JFJ&*
�

�

`��_^
��

O
LN NQLQ 23JGJ'*
�

�

where c(g) is creation of graphic node g, d(g) is deletion
of graphic node g, and OPkn is the operation list of the k-th
revision contained in node n. In the i-th revision, visibility
of the graphic nodes contained in node n is

°̄

°
®
­ ��

RWKHUZLVHIDOVH

&*'**JLIWUXH
J9

LQLQQ

LQ

��
��

� �

and a set of the visible graphic nodes contained in node n

is

�`�_^ J9J* LQLQ

And a set of the graphic nodes included in the i-th revision
is

�
L1Q LQL **

�

(GJH YLVLELOLW\

Suppose Eci is a set of the edges that are visible from
the graphic nodes included in the i-th revision, and CEi is a
set of the edges created and DEi is a set of the edges
deleted between the i+1th revision and the latest revision.
Then Eci, CEi, and DEi are obtained by

�
L*S JL ((

�
 c �

`��_^
��

O
LN NL 23HFH&(
�

�

`��_^
��

O
LN NL 23HGH'(
�

�

where c(e) and d(e) are creation and deletion of edge e,
respectively. Edge visibility in the the i-th revision is

°̄

°
®
­ �c�

RWKHUZLVHIDOVH

&('((HLIWUXH
H9

LLL

L

��
��

�

and a set of the edges included in the i-th revision is

�`�_^ H9H(LL

Set-valued attribute visibility
Suppose CAin is a set of the attributes created and DAin

is a set of the attributes deleted between the i+1th revision
and the latest revision among the set-valued attributes

contained in node n. Then CAin and DAin are obtained by

`��_^
��

O

LN NQLQ 23DFD&$
�

�

`��_^
��

O

LN NQLQ 23DGD'$
�

�

where c(a) and d(a) are creation and deletion of set-valued
attribute a, respectively. In the i-th revision, visibility of
the set-valued attributes contained in node n is

°̄

°
®
­ ��

RWKHUZLVHIDOVH

&$'$$DLIWUXH
D9

LQLQQ

LQ

��
��

� �

and a set of the set-valued attributes contained in node n is

�`�_^ D9D$ LQLQ

And a set of the set-valued attributes included in the i-th
revision is

�
L1Q

LQL $$
�

In addition, attribute value in the i-th revision is decided
by the earliest (inverse) update of the attribute between the
i+1th revision and the latest revision.

Figure 4(a) shows three revisions of a typical diagram.
The operations between two revisions are applied to derive
the successor revision. The stages of the internal
representation after each revision are illustrated in Figure
4(b). In derivation of revision 2, deletion of n1 makes n1

invisible and also makes e1 invisible from g2, and deletion
of e2 makes e2 invisible from its parents, g2 and g3. In
derivation of revision 3, deletion of e3 makes e3 invisible
from its parents, and deletion of a1 makes a1 invisible from
n3. Suppose a user wants to retrieve revision 1 after
creation of revision 3. Then the internal representation of
revision 3 is used to obtain revision 1. The result is as
follows.

N
0 = { n2, n3, n4, n5 }, C1 = { n4, n5 }, D1 = { n1 }, N1 = { n1, n2, n3 },

G
0
n

1 = { g1 }, G0
n

2 = { g2 }, G0
n

3 = { g3 },
CG

1
n = � and DG

1
n = � for �n� N1,

G
1
n

1 = { g1 }, G1
n

2 = { g2 }, G1
n

3 = { g3 }, G1 = { g1, g2, g3 },
E

0
g

1 = { e1 }, E0
g

2 = �, E0
g

3 = �, Ec1 = { e1 },
CE

1 = { e3, e4 }, DE
1 = { e2, e3 }, E1 = { e1, e2 },

A
0
n = � for �n� N1, CA

1
n

1 = �, DA
1
n

1 = �,
CA

1
n

2 = �, DA
1
n

2 = �, CA
1
n

3 = �, DA
1
n

3 = { a1 },
A

1
n

1 = �, A1
n

2 = �, A1
n

3 = { a1 }, and A1 = { a1 }.

3.3 Analysis

,Q WKLV VHFWLRQ� ZH GHPRQVWUDWH WKH FRUUHFWQHVV RI WKH

YLVLELOLW\ GHILQLWLRQV DQG FRPSDUH RXU PRGHO ZLWK GDWDEDVH

YHUVLRQ RI 2
�
>�@�

&RUUHFWQHVV RI WKH YLVLELOLW\ GHILQLWLRQV

:H H[DPLQH WKH FRUUHFWQHVV RI QRGH DQG HGJH

YLVLELOLW\ LQ WKLV VHFWLRQ� 7KH YLVLELOLW\ RI JUDSKLF QRGH DQG

VHW�YDOXHG DWWULEXWH LV VLPLODU WR QRGH YLVLELOLW\� We assume

that all operation lists are valid.
First, all nodes in N were created once and might be

deleted or not, regardless of their visibility in the latest
revision. Therefore all nodes included in N are divided into
the five categories listed in Table 2.

n1 : created and deleted before the i-th revision.
n2 : created before the i-th revision and deleted after the i-

th revision.
n3 : created before the i-th revision and not deleted.
n4 : created and deleted after the i-th revision.
n5 : created after the i-th revision and not deleted.

Q
�

Q
�

Q
�

D
�

H
�

H
�

Q
�

D
�

Q
�

H
�

Q
�

G�Q
�
�

G�H
�
�

F�Q
�
�

F�J
�
�

F�H
�
�

UHYLVLRQ � UHYLVLRQ �RS

Q
�

Q
�

H
�

Q
�

UHYLVLRQ �

Q
�

G�H
�
�

F�Q
�
�

F�J
�
�

F�H
�
�

G�D
�
�

RS

(a) Revisions of a diagram

G
�

Q
�

Q
�

D
�

J
�

Q
�

J
�

J
�

H
�

H
�

UHYLVLRQ �

G
�

Q
�

Q
�

D
�

Q
�

J
�

J
�

J
�

H
�

H
�

H
�

Q
�

J
�

UHYLVLRQ �

� � G�Q
�
�� G�H

�
�� F�Q

�
�� F�H

�
�

� � F�J
�
�

UHYLVLRQ �

G
�

Q
�

Q
�

D
�

Q
�

J
�

J
�

J
�

H
�

H
�

H
�

Q
�

J
�

� � G�Q
�
�� G�H

�
�� F�Q

�
�� F�H

�
�

� � G�H
�
�� F�Q

�
�� F�H

�
�

Q
�

J
�

H
�

�� G�D
�
� � � F�J

�
�

� � F�J
�
�

YLVLEOH UHODWLRQVKLS

LQYLVLEOH UHODWLRQVKLS

GLDJUDP

QRGH

JUDSKLF QRGH

HGJH

VHW�YDOXHG DWWULEXWH

RSHUDWLRQ OLVW

(b) Internal representation

Figure 4 An example of revision history

By the delete algorithms in Figure 3, n1, n2, and n4 are not
included in the latest revision. According to the above

definitions, N0 contains n3 and n5, Di contains n2 and n4, Ci

contains n4 and n5. Therefore Ni contains n2 and n3, and the
definition of Ni produces the nodes included in the i-th
revision.

Second, all child edges of the graphic nodes included
in the i-th revision are divided into the 7 categories listed
in Table 3. Since the edge categories from e1 to e5 are
similar to the node categories, it is sufficient to define e6

and e7.

e6 : created before the i-th revision and at least one of its
ancestors was deleted after the i-th revision.

e7 : created after the i-th revision and at least one of its
ancestors was deleted after the i-th revision.

By the delete algorithms in Figure 3, e1, e2, e4, e6, e7, and
the parent graphic nodes of e6 and e7 are not included in
the latest revision. Note that e6 and e7 are visible from one
of their parent graphic nodes. According to the above
definitions, Eci contains e3, e5, e6 and e7, CEi contains e4, e5,
and e7, DEi contains e2 and e4. Therefore Ei contains and e2,
e3, and e6, and the definition of Ei produces the edges
included in the i-th revision.

Table 2 Node categories

n
1

n
2

n
3

n
4

n
5

c(n1) c(n2) c(n3) OP
1
 ~ OPi

d(n1)
i-th revision u R R u u

d(n2) c(n4) c(n5) OPi+1~ OPl

d(n4)
latest revision u u R u R

R : included u : not included

Table 3 Edge categories

e
1

e
2

e
3

e
4

e
5

e
6

e
7

c(e1) c(e2) c(e3) c(e6)OP
1~ OPi

d(e1)
i-th revision u R R u u R u

d(e2) c(e4) c(e5) d(p6) c(e7)OPi+1~ OPl

d(e4) d(p7)
latest revision u u R u R x x

R : included u : not included
x : not included, but visible from one of its parent graphic nodes
pi : one of the parent graphic nodes (or the ancestor nodes) of ei

Comparison to O2 version management
We compare our model, DIVERS with database

version of O2 [2] because O2 is considered as the best
candidate for versioning of the fine-grained diagram
model among existing OODBMSs. Comparisons are made
in three aspects, operation processing, the storage
requirements, and version retrieval.

Creation of a new version of a diagram includes

update, create, and delete operations. First, when an
attribute of an object is updated, DIVERS adds the update
operation to the operation list. In contrast, O2 creates a
new version of the object and updates the version stamp
for the object unless the object is newly created in the
same revision. Second, when a new object is created, the
references of its parent objects are updated. For example,
node creation causes update of the diagram object, and
edge creation causes update of the parent graphic nodes.
O2 updates the version stamp and carries out the above
update process for the parent objects. Therefore additional
object creation and version stamp update may be required.
However, DIVERS just updates the parent objects and
adds the create operation to the operation list. Third, when
an object is deleted, its parent objects are also updated.
Deletion of an edge is similar to creation of an edge. But
deletion of a node causes deletion of its edges and update
of the nodes connected with the edges. In this case, O2

updates the version stamp and carries out the update
process for the diagram object and the connected nodes.
But DIVERS adds the delete operation to the operation list
and just updates the diagram object and the nodes. In
DIVERS, the time to add an operation to a operation list is
O(1) regardless of the number of revisions. O2 searches the
version stamps to update them. The searching time is
proportional to the number of changes, which is
proportional to the number of revisions in average.

Even if a few attributes are updated, O2 copies the
whole object. Moreover, creation and deletion of objects
cause implicit update, and it may require copying the
objects. However, DIVERS uses delta for changed objects
and does not require additional storage overhead for
implicit update.

DIVERS maintains the latest revision of each branch.
To retrieve an old revision, the definition of visibility is
used. The time complexity of the visibility definition is
proportional to the number of the operations from the
revision to the latest revision. DIVERS stores operation
lists separately to localize the scope of operation searching.
In contrast, O2 searches the version stamps to obtain a
specific database version. The searching time for version
stamps is also proportional to the number of the operations,
but it is larger than that of DIVERS because creation and
deletion of objects in O2 may cause another update
operations.

4 Merge Model

Our merge model differs from structure-oriented
merge [10] in two aspects. First, graphic information is
ignored in merging two diagrams because it generally
makes too much conflict. Second, assuming that deletion
of the useless objects is easier than creation of the objects
that are not included, we chose a passive method that

includes all possible objects. Instead, DIVERS informs a
user that some useless objects are included.

The 3-way merge rules for merging the two versions
originated from the base version are presented in Table 4.
Nodes are changed by update of their attributes, creation
of new edges, or changes of their edges, while edges are
changed by update of their attributes. The nodes of two
versions are merged by the rules in Table 4. When conflict
occurs, the rules for edges and set-valued attributes are
used to resolve the conflict between the two nodes. But
conflict in atomic attributes cannot be resolved without
user interaction.

Table 4 3-way merge rules

v1 v2 node edge set-valued attribute
changed not changed conflict v1 (v2) v1 (v2)
changed changed conflict v1 v2 v1 v2

not changed deleted (v1) (v1) (v1)
changed deleted v1 v1 v1
created created conflict v1 v2 v1 v2

v1 : includes the object of v1
v1 v2 : includes both the objects of v1 and v2
(v1) : includes the object of v1, but advises users to exclude it
v1 (v2) : includes both the objects of v1 and v2, but advises users

 to exclude the object of v2

5 Conclusion

In this paper, we proposed an efficient diagram
version model, which reflects the structure of software
diagrams and uses editing operations as delta. Based on
the model, a prototype of DIVERS was implemented on
top of ObjectStore. It can be implemented on top of any
DBMSs that do not provide object versioning since it does
not use the version management facilities of OODBMS.
We plan to implement a diagram editor that provides
operations lists to DIVERS.

5HIHUHQFHV

[1] E. Bertino and L. Martino, Object-Oriented Database
Systems, Addison-Wesley, 1993.

[2] W. Cellary and G. Jomier, “Consistency of Versions in
Object-Oriented Databases”, Building an Object-Oriented
Database System, The Story of O2, Morgan Kaufmann,
1992.

[3] ECMA, Portable Common Tool Environment (PCTE)
Abstract Specification, Standard ECMA-149, March 1995.

[4] The GOODSTEP Team, “The GOODSTEP Project:
General Object-Oriented Database for Software
Engineering Processes”, Proceedings of the APSEC`94,
1994.

[5] P. Lindsay, Y. Liu and O. Traynor, “A Generic Model for
Fine Grained Configuration Management Including
Version Control and Traceability”, Proceedings of the
Australian Software Engineering Conference (ASWEC`97),

September 1997.
[6] B. Magnusson, U. Asklund, and S. Minor, “Fine-Grained

Revision Control for Collaborative Software Development”,
ACM SIGSOFT'93 - Symposium on the Foundations of
Software Engineering, December 1993.

[7] %� 3� 0XQFK� -HQV�2WWR /DUVHQ� %� *XOOD� 5� &RQUDGL� DQG
(YHQ�$QGUH .DUOVVRQ� ¦8QLIRUP 9HUVLRQLQJ� 7KH &KDQJH�
2ULHQWHG 0RGHO§� 6&0��� �WK ,QWHUQDWLRQDO :RUNVKRS RQ
6RIWZDUH &RQILJXUDWLRQ 0DQDJHPHQW� 0D\ �����

[8] R. Ramakrishnan and D. J. Ram, “Modeling Design
Versions”, Proceedings of the twenty-second international
Conference on Very Large Data Bases, September 1996.

[9] E. Sciore, “Version and Configuration Management in an
Object-Oriented Data Model”, VLDB Journal, Vol.3-1,
1994.

[10] B. Westfechtel, “Structure-Oriented Merging of Revisions
of Software Documents”, 6&0��� 3rd International
Workshop on Software Configuration Management, 1991.

[11] B. Westfechtel, “A Graph-Based System for Managing
Configurations of Engineering Design Documents”,
International Journal of Software Engineering &
Knowledge Engineering, vol. 6-4, 1996.

