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Abstract 

In approximate, or error-correcting, graph matching one considers a set of graph edit operations, and defines the edit 
distance of two graphs gl and g2 as the shortest (or least cost) sequence of edit operations that transform gl into g2. A 
maximum common subgraph of two graphs gl and g2 is a subgraph of both gl and g2 such that there is no other subgraph 
of gl and g2 with more nodes. Graph edit distance and maximum common subgraph are well known concepts that have 
various applications in pattern recognition and machine vision. In this paper a particular cost function for graph edit distance 
is introduced, and it is shown that under this cost function graph edit distance computation is equivalent to the maximum 
common subgraph problem. © 1997 Elsevier Science B.V. 
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1. Introduction 

Graphs are general and powerful data structures useful for the representation of various objects and concepts. 
In pattern recognition and machine vision, for example, graphs are often used to represent object models, which 
are known a priori and stored in a database, and also unknown objects, which are to be recognized. Using 
graphs as a representation formalism, the recognition problem turns into a graph matching problem. An input 
graph representing an unknown object is compared to the database in order to find the most similar model 
graph. Applications where this concept has been successfully applied include Chinese character recognition (Lu 
et al., 1991), schematic diagram interpretation (Lee et al., 1990), seal verification (Lee and Kim, 1989), shape 
analysis (Pearce et al., 1994), image recognition (Christmas et al., 1995), and 3-D object recognition (Cho and 
Kim, 1992; Wong, 1992). 

Algorithms for graph matching include graph and subgraph isomorphism (Read and Corneil, 1977; Ullman, 
1976). However, due to errors and distortions in the input data, approximate, or error-correcting, graph matching 
methods are needed in most applications (Shapiro and Haralick, 1981; Bunke and Allerman, 1983; Sanfeliu and 
Fu, 1983). Another way to cope with distorted input graphs is to use the maximum common subgraph in order 
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to measure graph similarity (Levinson, 1992; Horaud and Skordas, 1989). Subgraph isomorphism, error-cor- 
recting graph isomorphism and maximum common subgraph computation are NP-complete problems. Neverthe- 
less, in many applications constraints and heuristics can be found that cut down the computational effort to a 
manageable size. 

In this paper we first formally define error-correcting graph matching and graph edit distance. Then we 
introduce a special cost function for error-correcting graph matching and show that under this cost function the 
graph edit distance problem is equivalent to maximum common subgraph computation. A similar relation is 
known to hold between the string edit distance and the length of the longest common subsequence of two strings 
(Wagner and Fischer, 1974). The main contribution of the paper is the formal proof of  the equivalence. But 
there are potential practical consequences of  this result in the sense that any known algorithm for graph edit 
distance becomes applicable for computing maximum common subgraphs, and vice versa. 

2. Graph edit distance and m a x i m u m  c o m m o n  subgraph 

Let L be a finite alphabet of labels for nodes and edges. 

Definit ion 1. A graph is a triple g = (V,a , /3 )  where 
V is the finite set of  vertices, 

• c~ :V~  L is the node labeling function, 
• /3: V × V ~ L is the edge labeling function. 

The set of  edges E is implicitly given by assuming that the graphs are fully connected, i.e., E = V × V. In 
other words, there exists exactly one edge between any pair of  nodes. This assumption is for notational 
convenience only and does not restrict generality. If  it is necessary to model the situation where edges exist only 
between distinguished pairs of  nodes, we can easily include a special null label in the set of  labels, L. Edges are 
directed, i.e., edge (x ,  y) originates at node x ~ V and terminates at node y ~ V. Node and edge labels come 
from the same alphabet, for notational convenience. If  node and edge labels need to be explicitly distinguished, 
the set L can be partitioned into two disjoint subsets. If  V = 0 then g is called the empty graph. 

Definition 2. Let g = (V, ce,/3) and g '  = (V' ,ce ' , /3 ' )  be two graphs; g '  is a subgraph of g, g '  = g ,  if 
• V 'c=V,  
• a ' ( x )  = a ( x )  for all x ~  V', 

~'((  x, y))  = / 3 ( ( x , y ) )  for all ( x, y)  ~ V' × V'. 

From Definition 2 it follows that, given a graph g = (V,c~,/3), any subset V' ~ V of its vertices uniquely 
defines a subgraph. This subgraph is called the subgraph that is induced by V'. 

Definit ion 3. Let gl = (VI'°ZI,/31) and g2 = (V2,a2,/32) be two graphs. A graph isomorphism between gl and 
g2 is a bijective mapping f:V~ ~ V 2 such that 

c~l(x) = ~2 ( f (x ) )  for all x ~ Vj, 
/31((x,y)) = / 3 2 ( ( f ( x ) , f ( y ) ) )  for all ( x , y )  ~ V l × V I. 
If  V 1 = V 2 = 0, then f is called the empty graph isomorphism. 

Definit ion 4. Let gl = (Vl,al , /31) and g2 = (V2,a2,/32) be two graphs and g'l _---gl, g2 ~ g 2 .  If  there exists a 
t t graph isomorphism between g'l and g~, then both gl and g2 are called a common subgraph of gl and g2. 

Definit ion 5. Let g~ and g2 be two graphs. A graph g is called a maximum common subgraph of g~ and g2 if 
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g is a common subgraph of  gl and g2 and there exists no other common subgraph of  gl and g2 that has more 
nodes than g. 

Definition 6. Let gl = (Vl ,a l , f l l )  and g2 = (V2-°t2,fl,,~) be two ~graphs. An error-correcting graph matching 
(ecgm) from gl to g2 is a bijective function f :V  1 --> V 2, where V 1 _c_ V l and r7 2 __ V 2. 

We say that node x ~ l ~  1 is substituted by node y ~ l )  z if f ( x ) = y ,  ff a l ( x ) = a 2 ( f ( x ) )  then the 
substitution is called an identical substitution. Furthermore, any node from V 1 - V 1 is deleted from g~, and any 
node from V 2 - r~ 2 inserted in g~2 under f .  We will use gt and g2 to denote the subgraphs of  gl and g2 that 
are induced by the sets I) l and V 2, respectively. 

The mapping f directly implies an edit operation on each node in g~ and g2. I.e., nodes are substituted, 
deleted, or inserted, as described above. Additionally, the mapping f indirectly implies edit operations on the 
edges of  gj and g2. If  f ( x  l) = Yl and f ( x  2) = Y2, then edge (x~,x 2) will be substituted by edge (Yl,Y2)- If  a 
node x is deleted from gl,  than any edge incident to x is deleted, too. Similarly, if a node x' is inserted in g2, 
then any edge incident to x' is inserted, too. Obviously, any ecgm f can be understood as a set of  edit 
operations (substitutions, deletions, and insertions of  both nodes and edges) that transform a given graph g 1 into 
another graph g2. 

Example  1. A graphical representation of  two graphs is given in Fig. 1. For those graphs, we have: 
• V~ = {1,2,3}; V 2 = {4,5,6}; L = {X,Y,Z,a,b,c, null}. 
• a l : l  ~ X ,  2 ~ X ,  3 ~  y. 
• a 2 : 4 ~ X ,  5 ~ X ,  6 ~ Z .  
• i l l :  ( 1 , 2 )  ~ a ,  ( 1 , 3 )  ~ b, ( 2 , 3 )  ~ b. 

• f12: ( 4 , 5 )  ~ a ,  ( 4 , 6 )  ~ c,  ( 5 , 6 )  ~ c.  
All other edges, including self-loops at vertices, are labeled with null and are not shown in Fig. 1. 

A possible ecgm is f : l  ~ 4, 2 ~ 5 with I) 1 = {1,2} and i) 2 = {4,5}. Under this ecgm, nodes 1 and 2 are 
substituted by 4 and 5, respectively. Consequently, edge (1,2) is substituted by edge (4,5). Note that all these 
substitutions are identical substitutions in the sense that no label changes are involved. Under f ,  node 3 and 
edges (1,3) and (2,3) are deleted, and node 6 together with its incident edges (4,6) and (5,6) are inserted. There 
are, of  course, many other ecgm's from gl to g2. 

Definition 7. The cost of an ecgmf: l) 1 ~ V2 from a graph gl = (Vl ,a l , f l l )  to a graph g2 = ( V 2 ' a 2 ' f 1 2 )  is 
given by 

c ( f )  = E c , s ( x )  + E Cnd(X) "[- E Cni(X ) d- E Ces(e) q- E Ced(e ) -t- E Cei(e), 
X~ VI x E  V 1-  VI XE V z -  V2 eE  EI eE El-- El e ~  E 2 -  E2 

where 
• Cns(X) is the cost of  substituting a node x ~ V1 ̂ by f ( x )  ~ Vz, 
• C,d(X) is the cost of  deleting a node x ~ V 1 - V l from gl,  

g,: 

X X X X 
a a 

Y Z 

Fig. 1. Two graphs gj and gz. 
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Cni(X) is the cost of  inserting a node x ~ V 2 - ~ in g2, 
Ced(e) is the cost of  deleting an edge e c E~ - E l from g~, 
Cei(e) is the cost of  inserting an edge e ~ E 2 - E 2 in g~2, 
Ces(e) is the cost  of substituting an edge e = (x ,y)  ~ E l by e' = ( f ( x ) , f ( y ) )  ~ ff~2. 

All costs are non-negative real numbers. 

In this definition, the shorthand notations E I,/~1,E2, and /~2 have been used for V 1 × V l, Vl × VJ, V2 × V2, 
and V2 × V2, respectively. Thus, the cost of an ecgm is simply obtained by summing the costs of  all edit 
operations that are implied by the mapping f.  

Definition 8. The edit distance d(gl,  g2) of two graphs g l and g2 is the minimum cost taken over all ecgm's 
from gl to g2, i.e., d(g l ,g2 )=min{c ( f ) l  f is an ecgm from gl to g2}. 

In practice, the costs c . . . . . . .  Ces introduced in Definition 7 are used to model the likelihood of  errors or 
distortions that may corrupt ideal patterns. The more likely a certain distortion is to occur, the smaller is its cost. 
Concrete values for c . . . . . . . .  ces have to be chosen depending on the particular application. In the remainder of  
this paper, we consider a special cost function that is interesting from the theoretical point of view in that it 
allows us to establish a relation between graph edit distance and maximum common subgraph. This special cost 
function is such that the ecgm which corresponds to the graph edit distance between two graphs also defines a 
maximum common subgraph. This cost function is defined as follows: 

Cns(X)={  O~ otherwise,ifal(x)=%(f(x))'} f o r a n y x ~ l ) , ,  

C.d ( x ) = I  for a n y x ~ V  1 - V 1 ,  

C n i ( X ) = l  f o r a n y x ~ V z - V  z , 

Ces( e) = { 0  otherwise,if/3'((x'Y))=~2((f(x),f(y))),} for any e = ( x , y )  ~ ffq, 

C ed( e ) = 0  for any e = ( x, y ) G E  l -- E'l , 

Cec(e ) = 0  f o r a n y e = ( x , y )  ~ E e - f f ,  2. 

Under this cost function, any node deletion and insertion has a cost equal to one. Identical node and edge 
substitutions have zero cost, while substitutions involving different labels have infinite cost. The insertion or 
deletion of  an edge incident to a node that is also inserted or deleted, respectively, has no cost. Thus, for the 
considered cost function the equation given in Definition 7 reduces to 

c ( f )  = E cns(x)  + E c . a ( x )  + E cni(x) + E ces(e)-  
.rE VI xC  V 1 -  VI x ~  V 2 -  !~ 2 e ~  El 

In the following we will be particularly interested in ecgm's with minimum cost. As for any two graphs 
gl = (Vl,eq,/3J) and g2 = ( V 2 , f f 2 , J ~ 2 )  there is always an ecgmf  with cost c( f )  = II/11 + Iv21 (corresponding to 
the case where all nodes together with their incident edges are deleted from g l, and all nodes with their incident 
edges are inserted in g2), any edit operation with infinite cost will never be applied. Thus we may think of edit 
operations with infinite cost as non-admissible. In other words, we focus our attention on ecgm's involving only 
insertions, deletions, identical node and edge substitutions, but no non-identical substitutions. 

Example  2. For the ecgm f discussed in Example 1, we have c( f )  = 2 under the considered cost function. 
Obviously there is no other ecgmf '  from gl to g2 with a cost smaller than oo. 
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Lemma 1. Let f be an ecgm from a graph g~ = (V l , a l ,~ l )  to a graph g2 = (V2,°t2,f12) with c(f) < ~. Then 
there exists a graph isomorphism between g l and g,e. 

Proof. Assume Vj = ft. Then each node and edge in gl is deleted, and each node and edge in g2 is inserted. 
Thus there exists the empty graph isomorphism between gl and g2. 

Now assume V1 4: 0. Because of c ( f )  < ~, we know that no non-identical node and edge substitutions are 
implied by f.  Therefore, for any x ~ V1 we know that a l ( x )  = a2(f(x)) .  Also, for any pair (x ,y )  ~ ~71 × V1, 
f l j ( ( x , y ) )  =/32((f (x) , f (y)) ) .  Thus there exists a graph isomorphism between gl and g2. [] 

Lemma 2. Let f be the same as in Lemma 1. Then c(f) = IV 11 + IV2[- 21X~11. 

Proof. If V1 = 0 then the cost of f is 11111- times the cost of a node deletion plus Iv2l- times the cost of a 
node insertion. As IV l[ = 0 the equation of Lemma 2 clearly holds. For $71 v~ t ,  any node from Vl is mapped to 
a node from V2 with zero cost. Also all edges from V1 × Vl are mapped to the edges of V2 × I'92 with zero cost. 
The total remaining cost is IV 11 - I Vii node deletions plus 1 I/2 [ - 1r¢21 node insertions. The equation of Lemma 2 
follows as [I,~1 ] = IV 2 I. [] 

Theorem 1. Let gl = (V~,°tl,fll) and g2 = (V2,a2,1~2) be two graphs and g = (V,o~,t~) a maximum common 
subgraph o f  g I and g2. Then d(gl ,g 2) = IVfl + 11121- 21vI. 

Proof. According to Definition 8, d ( g l , g  z) is the minimum cost taken over all ecgm's from g~ and gz- 
Because of Lemma 2 we know that the cost of any ecgm f is minimized by maximizing ] $311. And from Lemma 
1 it follows that there is a graph isomorphism from gl, the graph induced by re 1, to g2, the graph induced by 
V2- Consequently, gl is a common subgraph of gl and g2, and any maximum common subgraph g minimizes 
the right-hand side of the equation in Theorem 1. [] 

3. Conclusions 

In this paper, we have formally defined graph edit distance and introduced a special cost function under 
which graph edit distance computation is equivalent to the maximum common subgraph problem. That is, any 
function f that minimizes the cost of mapping the nodes and edges of a graph gl to those of another graph g2 
is a graph isomorphism between a subgraph gl of gl and a subgraph g2 of g2, and both gl and g2 are a 
maximum common subgraph of gl and ge. 

This result is not only interesting from the theoretical point of view, but it may be of practical relevance, too. 
An immediate consequence is that any algorithm that computes graph edit distance may be used for maximum 
common subgraph computation if it is run under the cost function introduced in this paper, and vice versa. 
Recently, some new algorithms for graph edit distance computation have been proposed (Bunke and Messmer, 
1997). These algorithms make use of intensive preprocessing in order to reduce the computation time needed 
on-line. With the result derived in the present paper, these algorithms become applicable to the maximum 
common subgraph problem, too. 

Error-correcting graph matching is a generalization of approximate string matching. A relation between string 
edit distance and the longest common subsequence of two strings, similar to the relation that has been derived 
for graphs in this paper, has been known for long (Wagner and Fischer, 1974). Recently, it has been shown that 
this relation holds true not only for the particular cost function given by Wagner and Fischer (1974), but for a 
whole class of cost functions (Rice et al., 1997). That is, there are infinitely many cost functions under which 
string edit distance computation is equivalent to finding the longest common subsequence of two strings. It is an 
interesting open question whether a similar class of cost functions exists for graph edit distance. 
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