Design and Evaluation of GRAS,
a Graph-Oriented Database System
for Engineering Applications

N. Kiesel, A. Schiirr, B. Westfechtel
Lehrstuhl fiir Informatik 111
Technical University of Aachen
W-5100 Aachen, Germany

Abstract

Modern software systems for application areas like CAD, office automation, or software
engineering are usually highly interactive and deal with rather complex object structures. For
the realization of these systems a nonstandard database system is needed which is able to
efficiently handle different types of coarse- and fine-grained objects (like documents and
paragraphs), hierarchical and nonhierarchical relationships between objects (like composi-
tion-links and cross-references), and finally attributes of rather different size (like chapter
numbers and bitmaps). Furthermore, this database system should support computation of
derived data, undo/redo of data modifications, error recovery from system crashes, and version
control mechanisms. In this paper, we describe the underlying data model and the functional-
ity of GRAS, a database system which has been designed according to the above mentioned
requirements. Furthermore, we motivate our central design decisions concerning its realiza-
tion, and we evaluate our system by means of the so-called hypermodel benchmark for hyper-
text databases.

1 Introduction

Building integrated, interactive, and incrementally working tools/environments for applica-
tion areas like CAD, software engineering, or office automation has been a great challenge.
Among other factors such as presentation, control, and process integration, data integration is
akey issue /ThN 92/. In order to ensure that all information in an environment is managed as a
consistent whole, it should be modelled and realized in a uniform way. To this end, a database
system is needed which takes the specific requirements of these environments into account
/DGL 86, Be 87, SZd 87].

In this paper, we present such a database system which is called GRAS (for GRAph Storage,
/BL 85, LS 88/). GRAS has been developed within the IPSEN project /Na 90/ which is con-
cerned with integrated, structure-oriented software development environments. IPSEN envi-
ronments consist of both tools cooperating within one working area (e.g. structure-oriented



editors, analyzers, and execution tools for programming-in-the-small), and tools integrating
different working areas (e.g. for maintaining consistency between requirements and design).
Since the IPSEN project was launched in the mid 80’s, GRAS has been extensively used for the
implementation of integrated, structure-oriented environments (not only in IPSEN, but also in
other research projects). Thus, a lot of experience has been gained, resulting in continuous
extensions and improvements of GRAS in response to the requirements of its applications.

In order to cope with the complexity of information managed in an integrated, structure-ori-
ented environment, its underlying database system has to be based upon an appropriate data
model. This data model should allow us to represent complex object structures in a natural way.
While the relational model has proved to be adequate for traditional business applications, it is
not well-suited for building applications such as software development environments, hyper-
text systems, CAD systems, etc. /Be 87, SZd 87/. On the other hand, it seems quite natural to
model objects as nodes (with attributes representing their properties) and relations between
them as edges. Therefore, we have selected attributed graphs as the data model underlying the
GRAS system.

Our presentation of the GRAS system is structured as follows:

* Insection 2, we give a brief overview of the most important features of the GRAS system
and point out relations to other work.

e Section 3 describes the data model underlying the GRAS system.

e Sections 4 and 5 present the architecture of the GRAS system. Section 4 describes the
kernel, while section 5 focuses on enhancing layers which extend the functionality provided
by the kernel.

* Insection 6, we evaluate our design decisions by means of a benchmark which has been run
against the GRAS system.

* Finally, section 7 describes the current state of implementation and presents an outlook on
future work.

2 Overview and Related Work

The purpose of this section is to provide the reader with an overview of the most important
features of the GRAS system and to relate GRAS to other systems. To this end, we discuss the
data model, the kernel, and the enhancing layers of GRAS in turn. All topics which are touched
upon briefly here will be elaborated more thoroughly in subsequent sections.

As already mentioned in the introduction, we have selected attributed graphs as the data
model underlying the GRAS system. There are a few other database systems which also rely on
attributed graphs, e.g. Cactis /HK 89/ or Adage /GRD 90/. In all of these systems, objects are



represented by means of typed nodes which may carry attributes. Binary, directed relations
between objects are modeled as edges which don’t carry attributes. Apart from these common
properties, the data models differ e.g. with respect to the type system, handling of derived
attributes, and aggregation. Despite of these differences, the common philosophy behind
attributed graphs is to provide a data model which is both simple and general. In this regard,
attributed graphs may be considered as a compromise between attributed trees /RT 88/, which
only support hierarchical relations, and the Entity-Relationship model /Ch 76/, which allows
for n-ary relations with attributes. Note that both attributed trees and the ER model may be
simulated by means of attributed graphs.

The GRAS system has a layered software architecture which may be divided into two parts.

The lower part, which is called the kernel, provides basic operations for storing and manipulat-

ing graph structures. In order to execute such operations efficiently, the following techniques

have been applied:

* Different kinds of data (e.g. nodes, long attributes, and edges) are mapped onto separate
substorages. In this way, data necessary for processing different kinds of application re-
quests are stored on different disk pages (see /KD 92/ and /KM 92/ for related approaches).

* Furthermore, an indexing scheme based on so-called “tries” and static hashing is used to
map data of varying size and structure onto storage locations. By means of an incrementally
and heuristically working clustering algorithm logically related data are mapped onto
adjacent storage locations (i.e. on the same storage page wherever this is possible). This
algorithm only incurs a negligible overhead in contrast to those profiling based and batch-
oriented clustering algorithms which reorganize whole databases (cf. /TN 92/ for an in-
depth comparison of different clustering algorithms).

The upper part of the GRAS architecture consists of enhancing layers which incrementally

extend the functionality provided by the kernel:

e The change management layer comprises all functions which are concerned with logging,
storing and executing sequences of change operations. Change management is performed
to provide for user recovery /ACS 84/ (undo/redo of user commands), system recovery
(recovery from system failures), and deltas (efficient storage of versions). These tasks are
handled by GRAS in an integrated way by maintaining logs of change operations. This is
done on a high level of abstraction (graph- rather than byte-oriented operations the latter
of which form the basis of recording deltas e.g. in EXODUS /CDR 89/) in order to keep
deltas short.

* The event management layer supports the definition of triggers and associated actions
which are called when specified events occur within GRAS (see /DKM 86/ for a general
overview about triggers within databases).

e The scheme and attribute management layer checks and ensures that all graph operations
are consistent with a scheme defining types of graph components and their interrelations.
In addition to optional runtime type checking, this layer supports derived attributes, i.e.



node attributes which are calculated from attributes of neighbor nodes. In contrast to
Cactis /HK 89/ — which to the best of our knowledge is the only other database system
which is based on attributed graphs and supports derived attributes —, the term “neighbor-
hood” is not confined to the 1-context; rather, arbitrarily far reaching attribute dependen-
cies are supported.

e The concurrency control and distribution layer manages concurrent access of different
applications to shared graphs. It allows to describe the intended interaction mode with
other applications by means of a flexible group-oriented access model. Controversial to
most other approaches (e.g. /CDR 89/), an operation exchange protocol instead of a data
exchange protocol was chosen for interprocess communication.

3 Data Model

In order to cope with the complexity of information managed in an integrated, structure-ori-
ented environment, a formal specification language called PROGRES /Sc 89, Sc 91a/b, SZ 91/
has been developed within the IPSEN project. A formal definition of this language including
syntax, static and dynamic semantics (the latter of which is defined by means of a calculus based
on first-order predicate logic) is given in /Sc 91b/. PROGRES is based on attributed graphs and
provides constructs for defining graph schemes (data definition) and complex graph trans-
formations (data manipulation). Its name is an acronym for PROgrammed Graph REwriting
Systems: Graph transformations are specified graphically by means of graph rewrite rules
which describe the replacement of a left-hand side subgraph with a right-hand side subgraph.
The name prefix "programmed” indicates that the application of these graph rewrite rules is
controlled by programs composed of deterministic and nondeterministic control structures.

GRAS and PROGRES are related in the following way: GRAS provides basic operations on
graphs such as creation/deletion of nodes and edges, manipulation and incremental computa-
tion of attributes, etc. These operations are checked against a graph scheme which is defined
by means of the data definition part of PROGRES. Complex graph transformations specified
in PROGRES are mapped onto basic operations provided by GRAS (which is the task of a
compiler/interpreter). Thus, GRAS serves as kernel of a more comprehensive database devel-
opment environment for PROGRES (the implementation of which is currently under way).

In the following, we will focus on the definition of graph schemes which control the operations
performed by the GRAS database system. Such schemes describe the components of attrib-
uted graphs: Objects are represented by means of typed nodes which may carry attributes.
Binary, directed relations between objects are modeled by edges which don’t carry attributes.
Thus, simple relations (which occur very frequently) may be represented directly; complex
relations (n-ary relations with attributes) have to be simulated. Attributes are either intrinsic
(the value is assigned explicitly) or derived. In the latter case, the value is automatically
calculated from values of other attributes which belong to the same node or to neighbor nodes.



Analogously, we distinguish between intrinsic relations (edges) and derived relations the latter
of which are specified by means of path expressions.

In order to illustrate the capabilities of our data model, we present a sample scheme definition
which is drawn from the hypertext area (cf. fig. 1). A documentation is divided into sections
which may be nested arbitrarily. Each section has a name (title) and is numbered in a hierarchi-
cal fashion. Paragraphs, which contain plain text, form the leaves of the tree. The composition
tree is augmented with cross references which may be created between arbitrary components.

Abstract node classes are used for modeling sets of nodes with a common interface (and
common properties). A node class determines the attributes which all nodes of this class
possess, and the relations in which they may participate. Attributes are either intrinsic or
derived. In the former case (e.g. attribute Name of class COMPOSITE), an initial value may be
specified; in the latter case, an attribute evaluation rule describes how the value is to be
computed (see below).

Node classes are organized into an inheritance hierarchy. In our example, OBJECT acts as the
root of the application specific hierarchy. A subclass inherits from its superclasses all attributes
defined in the superclasses, and all relations in which nodes of the superclasses may partici-
pate. Multiple inheritance is supported. For example, INNER inherits from both COM-
POSITE and COMPONENT. Therefore, anode of class INNER has a name and may serve both
as source and as sink of Contains relations.

Concrete node types are instances of node classes (e.g. Documentation is an instance of DOC-
UMENT). Nodes, in turn, are instances of node types. All node types of a certain node class
share a common interface, but may differ in their implementations, i.e. in the way derived
attributes are calculated. Differing behavior is specified by redefining attribute evaluation
rules (not shown in our example).

Edge types are used to represent intrinsic, binary, directed relations between nodes of certain
classes. For example, edges of type Contains connect COMPOSITE to COMPONENT nodes.
Optionally, the cardinality of an edge type may be specified (the default is many-to-many, i.e.
SOURCE _CLASS [0: n] —> SINK_CLASS [0 : n]).

Paths represent derived relations and are specified by means of path expressions which are
composed of primitives (e.g. <—Contains— for following Contains edges in the opposite
direction) and operators such as loop, sequence, transitive closure, etc. For example, the path
Predecessorleads from a section to its predecessor section (more precisely : to a preceding node
of class INNER), if any. "&” denotes a sequence, i.e. a concatenation of paths; curly brackets
embrace a loop.

The values of derived attributes are calculated from the values of other attributes which either
belong to the same node or to neighbor nodes. Derivation rules are specified in node class or
node type declarations. In our example, nodes of class INNER carry derived attributes Position



node class OBJECT end;

(* Root of the class hierarchy. *)
node class COMPOSITE is a OBJECT;

intrinsic Name : string := ””;
end;

(* A composite is a named object which contains components. string is a built-in type. *)
edge type Contains : COMPOSITE [1: 1] —> COMPONENT [1 : n];

(* A component is contained in exactly one composite, and a composite contains at least one component. *)
node class COMPONENT is a OBJECT end;
edge type Precedes : COMPONENT [0: 1] —> COMPONENT [0 : 1];

(* Components of a composite are ordered linearly. *)
edge type RefersTo : COMPONENT [0 : n] —> COMPONENT [0 : n];

(* Cross references between arbitrary components. Each component may have arbitrarily many incoming

and outgoing references. *)
node class DOCUMENT is a COMPOSITE;
intrinsic Author : string := "”;

nd;
(* Root of a hypertext document. *)
node type Documentation : DOCUMENT end;

(* In our sample specification, only one type of document is defined. *)
node class TEXT_BLOCK is a COMPONENT;

intrinsic Contents : Text := emptyText;

nd;
(* Leaves of the component hierarchy. Text is a user defined type. *)
node type Paragraph : TEXT_BLOCK end;
node type Subparagraph : TEXT BLOCK end;

(* Paragraphs and subparagraphs are differently typed instances of class TEXT BLOCK. *)
node class INNER is a COMPOSITE, COMPONENT;

derived Position : integer = [ self.Predecessor.Position + 1 | 1 J;

derived Number : string = [ self.Father.Number & ”.” & IntToString(self.Position) |

IntToString(self. Position) ];

(3

(3

nd;

(* Innernodes of the component hierarchy. The position of such a node is either obtained by incrementing the
position of its predecessor or is set to 1 if no predecessor exists. Analogously, its number is calculated by
concatenating the number of the father and the string representation of its own position, or by merely con-
verting its own position if no father exists. *)

node type Section : INNER end;

path Predecessor : INNER [0: 1] —> INNER [0: 1] =
<—Precedes— & { not instance of INNER : <—Precedes— }
nd;

(* Path to the preceding INNER node. Notice that INNER and TEXT BLOCK nodes may be mixed freely;
therefore, an iterator is needed to obtain a predecessor which carries a Position attribute. *)

path Father : INNER [1:n] —> INNER [0: 1] =
<—Contains— & instance of INNER
end;

(3

(3

Fig. 1 : Graph scheme of documentations



and Number. In both cases, conditional expressions are used for calculating their values. The
alternative list is enclosed in square brackets; alternatives are separated by vertical bars. When
a conditional expression is evaluated, the first alternative is chosen which yields a defined
value. Notice that neighbor nodes don’t have to belong to the 1-context; rather, they need only
be connected to the node of interest via a path which may be arbitrarily long.

Let us summarize the main features of our data model:

e Attributed graphs are both simple and general. Other data models may be simulated by
means of attributed graphs (see below).

e Complex graph queries may be defined with the aid of derived relations and attributes
which are specified using powerful, declarative language constructs. With respect to the
usual terminology of database systems, these derived informations are views which will be
constructed on demand and maintained incrementally.

» The stratified type system (classes are types of types) avoids the theoretical pitfalls of
reflexive type systems with the ‘type is the type of all types including itself” assumption (cf.
/MR 86/) and allows for typed type parameters of operations.

e (Multiple) inheritance of node classes makes it possible to specify polymorphic graph
operations which rely on dynamic binding of attribute evaluation rules and which exploit
the knowledge contained in class hierarchies for pattern matching purposes.

* Relations are bidirectional, i.c. they may be traversed in both directions. Therefore, the
application is not responsible for keeping pairs of unidirectional pointers consistent (ase.g.
in IDL /IDL 87/).

» Referential integrity is guaranteed, i.e. when a node is deleted, all adjacent edges are
deleted, as well.

» Edge types are declared separately, i.e. edges are not treated as pairs of pointer-valued
node attributes which would significantly reduce the reusability of node classes (the decla-
ration of pointer attributes within node classes prevents reuse of these node classes within
another context with a different set of relationships; cf. /Ki 91/).

Comparing our data model to data models underlying other database systems, we observe that
there are a few other database systems which rely on attributed graphs (e.g. Adage /GRD 90/
and Cactis /HK 88, HK 89/ ). The data models of these systems differ e.g. with respect to the
type system, aggregation, and handling of derived attributes (the latter of these aspects will be
discussed in section 5). Rather than going into details of these graph-based models, let us
discuss the general relations to some other, more wide-spread data models:

* Abstract syntax trees have been used in various syntax-aided software development envi-
ronments (or generators for such environments) such as e.g. Gandalf /HN 86/ and CPSG
/RT 88/. Abstract syntax trees may be — and actually have been — simulated on top of
GRAS. The advantage of using a more general framework — graphs instead of trees — lies
in the uniform representation of tree and nontree relations, i.e. abstract syntax trees may be
augmented with edges representing control flow, data flow, etc.. This leads to the more
general notion of abstract syntax graphs /ELN 92/.
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Database systems such as DAMOKLES /DGL 86/ and PCTE /ECMA 90/ are based on
extended Entity-Relationship models (which ultimately have their roots in the ER model
proposed by Chen /Ch 76/). These models differ from attributed graphs at least in two ways:
First, relationships may be attributed; second, there is a predefined type of relationship
which provides for aggregation (i.e. complex objects). Furthermore, systems like PCTE
introduce even more categories of relationships (composition, reference, implicit, designa-
tion, and existence in the PCTE ECMA standard). In order to avoid commitment to a
complicated data model which incorporates many decisions which are subject to debate,
we decided to keep our data model as simple as possible and to offer the user a powerful
data definition and manipulation language for specifying different variants of EER models
as desired.

Recently, a couple of database systems (e.g. O, /De 91/, Objectstore /LLOW 91/, and
GemStone /BOS 91/) have been developed which are based on an object-oriented data
model. In an object-oriented framework, nodes would be represented as objects, and
operations would be attached to single nodes only. On the contrary, operations such as
creating a cross-reference between two nodes are attached to whole graphs rather than to
single nodes in PROGRES; only operations for calculating attribute values refer to nodes
(and their context) rather than to graphs. Another difference concerns the treatment of
relations, which in many object-oriented data models have to be simulated through pair-
wise pointers.

Architecture: The Kernel

In the next two sections, we discuss the internal architecture of the GRAS system. In order to
provide for reusability and flexibility, we have designed a layered software architecture which
is divided into two parts:

Its lower part (the kernel), which is depicted in fig. 2 and will be explained in this section,
consists of layers of data abstraction each of which has an own, carefully designed data
model and supports the implementation of a wide spectrum of different applications (with
different data models) on top of it.

By way of contrast, all layers of the upper part, which will be explained in the following
section, rely on a common, graph-oriented data model. Each layer incrementally adds a set
of logically related services to the functionality of the layer beneath it.

When proceeding through the layers of the architecture, we describe their functionality (i.e.
the interface provided to upper layers) as well as their realization. We motivate our central
design decisions not only with respect to individual layers, but also with respect to their
arrangement (i.e. their position within the architecture).
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Fig. 2 : Lower layers of the GRAS architecture

4.1 The ADT Graph Storage

The GraphStorage is the topmost data abstraction layer. It provides a graph-oriented interface
which exports all those GRAS resources which are necessary for creating, deleting, and acces-
sing all kinds of graph components. In particular, the interface offers write operations

e for creating and deleting typed nodes,

» for creating and deleting typed directed edges,

 for initializing and modifying arbitrarily long node attributes,

* and finally for maintaining attribute indexes.

To characterize all read operations, graphs are considered to be sets of tuples of the following
forms:

* node := (node key, node type).

e edge := (source node key, edge type, sink node key).

e attribute := (node key, attribute name, attribute value).

The GRAS system supports almost all possible partial match queries for the relations enumer-
ated abovel. There are e.g. resources for determining the in- and out-context of a node, for
retrieving all nodes with a certain attribute value, and for returning the names of all attributes
which have defined values for a certain node. The results of such partial match queries are
either single elements or sets of elements or even binary relations. Therefore, the GRAS
system offers facilities for efficiently handling (ordered) temporary sets and relations.

1. Partial match queries of the forms ( ?, edge type, ? ) and ( ?, ?, attribute value ) are not supported.



Internally, graphs are mapped onto separate substorages for each kind of data:

» The LocalSetStorage, the only storage which contains volatile data, supports storing and
subsequent processing of temporary query results (sets and binary relations).

* The NodeStorage has been designed as a repository for nodes themselves and for their most
frequently accessed, rather short attributes.

* Long node attributes (byte sequences of almost arbitrary length) are mapped onto the
AttributeStorage.

* The IndexStorage is responsible for maintaining maps of attribute values to node keys and
for executing corresponding partial match queries.

* Finally, the EdgeStorage provides operations for creating/deleting edges and for executing
partial match queries with respect to these edges.

Storing different kinds of data within different substorages has been one of our most important
design decisions. In this way, data necessary for processing different kinds of application
requests are stored on different disk pages®. In particular, the separation of large attributes
from all other kind of data reduces the volume of data which must be transferred into main
memory for the execution of structure-oriented queries considerably. And keeping relations
between objects (nodes) separate is an approved technique for accelerating navigational
queries (in contrast to “path indexes” in /KD 92/ and “access support relations” in /KM 92/,
GRAS even avoids duplication of intrinsic relations within an additional index structure).

4.2 The ADT Virtual Record Storage

All permanent storages described in the previous section share the following characteristics:

* They contain persistent data of dynamically varying size which ranges from a few hundred
bytes up to some megabytes.

* FEach data portion stored in one of these substorages has to be identified by a unique
database key. These database keys are internally used for establishing cross-references
between different portions of data. They are also used for representing nodes in applica-
tion specific data structures. These database keys must not vary during the whole lifespan
of the data portions they belong to.

* Furthermore, some of these substorages have to support efficient retrieval of data portions,
selected by (only a part of) their database keys (partial match queries).

Having these common characteristics in mind, we have implemented one parametric Virtual-
RecordStorage with a record-oriented interface. This storage is used as a common basis for the
realization of all specialized permanent substorages mentioned above. The parameters are
mainly used for defining the structure of the records. Any record has a database key of fixed
size and additionally may consist of

2. Clustering within one substorage will be discussed below.

— 10 —



e adata area of fixed size (e.g. for storing node types),

e anumber of data areas of dynamically varying size (e.g. for storing large attributes),

e anumber of areas for ordered sets of database keys (e.g. for storing references to other
records).

In order to clarify the process of implementing substorages as special instances of the Virtual-
RecordStorage let us consider the most complicated case, the realization of the EdgeStorage. As
already explained before, the components of this storage are tuples of the form

(source node key, edge type, sink node key)
and we have to answer partial match queries with two specified components
(source node key, edge type, ?) and ( ?, edge type, sink node key)
as well as partial match queries with one specified component

(source node key, ?, ?) and ( ?, ?, sink node key) .

For efficiently processing queries with a specified source (sink) node key, this node key must be

aprefix of the corresponding record key (see below). Therefore, we have to store two permuta-

tions of edge triples as records with the following layout:

» The record’s key consists of a source (sink) node key k followed by a permutation flag
(distinguishing between source and sink keys) and an edge type t.

* The fixed size data area has length 0.

* And the last record component is an ordered set of all those sink (source) node keys which
belong to any edge with source (sink) k and type ¢.

Records of the virtual storage are mapped onto locations on external storage pages in the
following way: The unique database keys which identify records are hashed onto physical
addresses. A special variant of binary index trees, so-called “tries” (cf. e.g. /ED 88/), is used for
selecting arecord’s page, and static hashing is used for determining an appropriate position on
a selected page.

Page 1 01000 00010
01010 00110
Page 2 Page 3

Fig. 3 : Indexing and clustering records

Fig. 3 contains a trivial example of a substorage with five records distributed over three pages.
In this case, the first key bit of the record ‘10000’ and the first two bits of all other records are

- 11 -



used to determine their pages (the first page contains all records with ‘1’ as key prefix, the
second page all records with ‘01’ as key prefix, and the third page all records with ‘00’ as key
prefix). All remaining key bits are input to the static hashing function which computes record
positions on selected pages.

As already indicated by fig. 3, any substorage has its own index tree so that structural data (e.g.
edges) and nonstructural data (e.g. attribute values) are kept on separate pages. The data
representing index trees are stored on separate pages, too. Beside this overall strategy for
storing different kinds of data on different pages, the GRAS system additionally tries to cluster
records within one substorage in the following way: The algorithms which generate database
keys for new records and thus determine the page positions of new records are sensitive to
requests of the application layer, i.e. the application may specify neighborhoods for records
which are often accessed together (e.g. nodes connected by certain edges)3. This information is
used for clustering logically related records onto adjacent storage locations. More precisely,
the computation of a database key for a new record may be influenced by the database key of an
already existing record (determined by the application), so that
(1) the dynamic hashing function maps the new record onto the same page as the already exist-
ing record whenever possible (both keys must have a sufficiently long identical prefix),
(2) subsequent splitting of pages does not destroy these record clusters (additional key bits,
currently not used for page selection, must be identical, too),
(3) and the index trees do not degenerate in the case of splitting an old page into two new pages
by mapping almost all records of the old page onto one of the new pages (the key creation
algorithm has to guarantee an almost uniform distribution of additional key bits).

Note that it is difficult and sometimes even impossible to find an optimal solution for both the

conditions (2) and (3). Consider again the situation of fig. 3 which contains a somewhat

artificially constructed but illustrative example for this problem: When creating a new record

“nearby” record ‘01010°, we have the following alternatives for the new record key:

(1) Key ‘0100?°%: this choice has the consequence that splitting page 2 produces one empty
page and one page containing all records of the old page (violation of condition (3) above).

(2) Key ‘011??’: this choice has the consequence that splitting page 2 maps the old record
‘01010’ and the new record ‘011??’ onto different pages (violation of condition (2) above).

Therefore, we have tested different key creation heuristics which try to find the right balance
between the risk of producing unbalanced index trees and the risk of scattering logically
related portions of data over many pages. Furthermore, the creation of database keys and thus
the selection of physical record addresses may even be controlled completely by a GRAS
application which may exploit additional application specific knowledge to improve clustering
(see benchmark results in section 6.3).

3. The application specifies neighborhoods for node records only. The distribution of edges and node at-

tributes over pages is the same as for the nodes they belong to.
4. Question marks in node keys must be replaced either by ‘0’ or by ‘1’.

- 12 -



To summarize, the presented indexing scheme and its accompanying key creation algorithm

have the following characteristics:

* The hashing function, which maps record keys onto page locations, is order preserving and
thus allows for efficiently retrieving all records with a given key prefix.

* Order preserving hashing functions in general are not able to guarantee a uniform distribu-
tion of records over pages. This is the task of our key creation algorithm.

e The algorithms for inserting, deleting, and searching records are rather simple and
straightforward to implement.

* Nevertheless, they can deal with data of rather dynamically varying size without any needs
for maintaining overflow pages or for global reorganizations of data or index structures.

* And the index trees themselves (tries) are very small in comparison to the data they are
used to address and, therefore, may and should normally be kept in main memory.

Thus, our indexing scheme is well-suited for dynamically growing and shrinking medium sized

databases (with each database having the size of a typical engineering document). In this case,

tries for addressing pages but not the addressed data itself fit into main memory. On the

contrary,

* main memory indexing schemes — like those described in /AP 92/ and /LC 86/ — are tuned
for the case that a whole database fits into main memory,

* whereas B-trees /BC 72/ and their variants assume that index structures themselves do no
longer fit into main memory and traversing these structures requires disk accesses, too,

e and dynamic hashing techniques /ED 88/ which either use directories — like ‘extendible
hashing’ /ENPS 79/, ‘virtual hashing’ /Li 78/ etc. — or which address their data without any
index at all —like ‘linear hashing’ /La 80/, ‘modified dynamic hashing’ /Ka 85/ etc. — suffer
from the following drawback: they require global reorganizations of index structures or
data from time to time in order to avoid expensive maintenance of overflow chains®.

4.3 The ADTs Page Storage and Network File System

The PageStorage provides a page-oriented interface; each page is a sequence of bytes which has
a fixed length. Graphs are not required to fit into main memory; therefore, the page storage
maintains a page cache in main memory and controls transfer of pages between disk and main
memory. Paging is driven by an LRU strategy which takes additional factors such as frequency
of access and priority into account (log pages are assigned the highest priority, followed by
index pages and data pages). The size of the page cache may be fixed as needed. If the
underlying operating system provides a sufficiently large virtual memory, the size may be

5. Furthermore, B-trees as well as B*-trees keep record keys as part of their index structures and, therefore,
tend to require more storage space than tries.

6. Analysis and simulation results of /F1 83/ and /La 88/ indicate that the above mentioned dynamic hashing
techniques might be superior to our approach in the case of large databases, which consist of many thou-
sands of pages and which would require deep tries.
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chosen so that all graph operations are eventually performed in virtual memory. In this way,
paging is delegated to the operating system.

Finally, the NetworkFileSystem layer is the interface to the underlying operating system’s
distributed file management. It maps page sequences onto files. Since its interface is indepen-
dent of a particular operating system, it is an easy task to port the GRAS system to another
operating system. To this end, only few pages of source code implementing the file system layer
have to be adapted or written anew.

S  Architecture: Enhancing Layers

All layers on top of the GRAS system’s kernel GraphStorage (see fig. 4) rely on a common,
graph-oriented data model. Each layer incrementally adds a set of logically related services to
the functionality of the layer beneath it. In contrast to the last section, which described layers
top-down, we proceed bottom-up through the layers of the upper part. In this way, it is easier to
understand what each layer adds.

ClientServerDistribution

v

SchemeAndAttributeManagement

!

EventManagement

v

ChangeManagement

..............................

..............................

Fig. 4 : Upper layers of the GRAS architecture

5.1 The Change Management Layer

The ChangeManagement /Br 89/ layer is placed above the ADT GraphStorage which provides
all resources necessary for creating, modifying, deleting, and accessing all kinds of graph
components. It adds to this layer all functions which are concerned with logging, storing, and
executing sequences of change operations. Change management is performed to provide for
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e user recovery (undo/redo of user commands),
e system recovery (recovery from system failures), and
e deltas (efficient storage of versions).

These tasks are handled by GRAS in an integrated way by maintaining logs of change opera-
tions.

Following /ACS 84/, we define user recovery as recovery actions which are controlled by the
user rather than by the system which he uses. For example, the user may undo a command
which he has activated inadvertently, he may switch back and forth between breakpoints when
debugging a program, etc. GRAS supports implementation of user recovery in the following
way: While a graph is open, an application may define checkpoints. Typically, this is done when
the execution of a user command terminates. By means of undo and redo operations, the
application may switch back and forth between arbitrary checkpoints. Checkpoints are or-
dered sequentially. Note that undo and redo are constrained such that they always yield a
semantically consistent state; this could not be guaranteed if e.g. selective undo were sup-
ported (undo command i, but not commands i+1, ..., n).

Checkpoints are also used for system recovery: On system failure, GRAS tries to restore the
most previous checkpoint. Furthermore, system recovery is supported by means of nested
transactions which provide a useful means for implementing user commands in a layered
architecture: Each application layer defines a corresponding level of consistency and uses
transactions to guarantee atomicity of the operations which it provides. In particular, each
layer is able to abort operation sequences of the next lower level which lead to an inconsistent
state from its point of view. Note that checkpoints are treated as boundaries of top-level
transactions.

In addition to supporting undo/redo ‘in the small’, a software development environment has to
provide for undo/redo ‘in the large’. This is the task of version control /Ti 85/. While GRAS
does not incorporate a specific model of version control (which is nearly always subject to
debate), it does provide flexible mechanisms for efficient storage of versions by means of
graph deltas /We 89/. Here, the term ’delta’ denotes a sequence of operations that, being
applied to a version v/, yields another version v2. Instead of storing all versions of one docu-
ment completely, it suffices to store a few of them completely and reconstruct the others by
means of deltas.

GRAS provides for flexible delta control: Deltas save storage space at the cost of access time.
Before a version may be operated on, it may have to be reconstructed. Thus, the (optional) use
of deltas is controlled by the application in order to achieve an appropriate balance of storage
and runtime efficiency. Thereby, the application may choose between forward and backward
deltas. This is illustrated in fig. 5 which shows a version tree (part a) and different examples for
the storage of its four graph versions (parts b-d):
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* Only forward deltas are used (part b).

* The most recent version on the main trunk is stored completely; all other versions are
reconstructed by means of backward and forward deltas (part c). This solution was pio-
neered by RCS /Ti 85/.

e Only backward deltas are used (part d). In this case, there may be multiple ways to
reconstruct a version. Then, GRAS selects the most efficient one automatically.

vl vl vl vl

. x x

v2 VZiI qu VZR
v3 v4 V3ﬁ,, \EIV4 V3ﬁ,, \\‘ v4 V3 ’,, \\‘ v4
|| H B

a) logical structure b) forward deltas ¢) forward and d) backward deltas
backward deltas
V2 version [] graph which has to be reconstructed
—> successor relation I graph which is directly accessible

- -y reconstruction relation

Fig. 5 : Flexibility of delta control

Virtually all functions of change management are implemented in a uniform way by means of
logs of change operations on graphs. Two kinds of logs are needed: The forward log is used to
implement redo, forward deltas, and recovery from system crashes’, while the backward log is
used analogously for undo, backward deltas, and transaction abort. Thus, logs are reused in an
elegant manner for multiple purposes. Particularly, logging of change operations yields a delta
on the side so that its costly a-posteriori reconstruction may be avoided. However, direct use of
logs may be inefficient because the effect of one operation may be overridden by subsequent
operations. Therefore, logs are compressed a-posteriori by removing redundant operations
(which is still less costly than performing a diff-like a-posteriori comparison).

Logging is performed between EventManagement (see section 5.2) and GraphStorage layers for

the following reasons:

* On the one hand, logging has to be done beneath event handling because otherwise event
handlers would be invoked on executing undo and redo operations, i.e. event handlers
would be invoked “one time too many”.

7. For system recovery, forward logs are supplemented by a shadow page mechanism in the PageStorage layer
which prevents any corruptions of an open graph’s initial state. After “hard” system crashes, the most re-

cent consistent graph state is reconstructed by applying this forward log to the still existing initial graph
state until the last recorded check point.
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e On the other hand, logged operations should be as complex as possible in order to obtain
short deltas. Since each operation on one layer is mapped onto multiple operations on the
next lower layer, logging is performed on the highest GRAS-internal layer of data abstrac-
tion, namely the graph-oriented layer.

version vl delta
graph - - - @ graph
v3 a K
— . demll ]
— v
T — - N
i o ~ N
\ -

—m
version E‘ directly accessible, visible state
—>» successor relation @ indirectly accessible, visible state

— T~ 7 correspondence between a D indirectly accessible, invisible state

version and a state . .
- Y reconstruction relation

|> delta

Fig. 6 : Example of a delta graph (right hand side) and its relations
to the corresponding version graph (left-hand side)

In order to execute coarse-grained operations (e.g. Open, Close, Delete, Copy operations on

graphs), GRAS maintains an internal data structure which is invisible for applications. This

data structure is modeled and realized as a graph which is called delta graph. Fig. 6 shows an
example of an (internal) delta graph and its relations to a corresponding (external) version
graph. In general, a delta graph consists of the following components:

* Graph state nodes represent states which may be classified as follows: Firstly, a state is
either directly accessible, or it is reconstructed by application of deltas. Secondly, a state is
either visible to the application, or it is used internally as an intermediate state that is
produced in the course of reconstruction of a visible state.

* Deltanodes represent sequences of graph operations which have been executed within one
session (from Open to Close).
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e Bymeansofreconstruction edges, a deltaisrelated to the source state to which itis applied,
and to the sink state which it produces.

For example, when the application invokes an Open operation on version vI, GRAS retrieves
the corresponding state node which represents an indirectly accessible state. Then, it searches
for directly accessible states from which this state may be reconstructed (in this case, the nodes
forv3 and v4). The state with the shortest distance (measured in accumulated length of deltas)
is selected for reconstruction (this may well be the state for v4 even though the length measured
in numbers of deltas is larger than for v3).

Let us summarize the main features of our approach to change management (which is de-

scribed more comprehensively in /Br 89, We 89, We 91/

* GRAS provides for flexible delta control, i.e. the application controls whether and how
deltas are used for the storage of versions.

* GRAS supports the realization of version control without introducing a version model
(separation of modeling and realization of version control).

* GRAS supports system as well as user recovery.

* All functions of change management are implemented in a uniform manner by means of
logs. Logs are maintained on a high level of abstraction in order to keep deltas short.

Comparing our approach to other work, we observe that traditional version control systems
such as SCCS /Ro 75/ or RCS /Ti 85/ are different in the following respects: Applications can’t
control the use of deltas, modeling of version control is mixed up with its realization, and deltas
are constructed a-posteriori® such that undo/redo has to be supported by a different mecha-
nism. In contrast, more recent systems such as Gypsy /Co 89/ and EXODUS /CDR 89/ are
closer to GRAS inasmuch as they provide for flexible delta control and separate modeling
from realization of version control.

While Gypsy (unlike GRAS) relies on a-posteriori construction of deltas, EXODUS constructs
deltas on the side when performing change operations. In contrast to GRAS, EXODUS relies
on data sharing: Data which are common to multiple versions are physically shared among
them. This is achieved by applicative operations on tree-like structures (EXODUS uses B*
trees for storing file objects). Similar techniques have been applied e.g. in /FM 86/ and /Al 88/.
Although this approach seems attractive because versions are always immediately accessible?,
it has been ruled out for the following reason: Data sharing techniques as they have been
applied in other systems operate on a low level of abstraction. Within the GRAS system, such a
technique would be applied on the page level: Each graph is realized by an index tree the leaves
of which point to storage pages. Small changes on the graph level (e.g. creation of a single
node) may imply comprehensive physical reorganizations on the page level. Therefore, deltas
8. An algorithm for a-posteriori construction of deltas which is applicable to arbitrary non—text files (in con-
trast to the built-in algorithms of SCCS and RCS) is presented in /Re 91/.

9. When following the operation-based approach, reconstruction costs may be reduced by introducing a
cache of recently reconstructed versions (as it is done e.g. in Gypsy).
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on this level would become too large to be useful for an application. Note that this is not an
argument against data sharing in general; rather, we argue against the usage of data sharing on
a low level of abstraction. To the best of our knowledge, adequate techniques for high-level
data sharing in attributed graphs have not yet been developed!.

5.2 The Event Management Layer

Event/Trigger mechanisms are a fundamental concept of most so-called active database sys-
tems /DKM 86, Da 88, Ch 89, BM 91/. They are also used in modern applications for separating
the user interface component from the functional part of the application. Their possible usage
includes

» the incremental supervision of certain consistency constraints,

» the incremental computation of derived data like derived attribute values or relationships,
e andthe a-posterioriintegration of different applications accessing the same data structure.

In GRAS, triggers consist of the following four components:

(1) An event determining the type of the graph modification to be observed, as e.g. the inser-
tion or deletion of edges with a given edge type.

(2) An action to be executed when a graph modification matches (directly or as a side effect by
another operation) the given event.

(3) A priority to order the concurrent raising of multiple triggers for the same event at the
same node.

(4) An additional application context parameter which is one of the arguments for the called
action.

GRAS offers resources for defining and manipulating such triggers. Due to the special charac-
teristics of the GRAS system, the class of possible events is fixed and determined by the
possible basic state modifications of graphs: insertion, manipulation, and deletion of nodes
and edges. This is compensated by the possibility to use arbitrary application-defined proce-
dures for actions. Therefore, further restrictions for the execution of actions can be given
within the action code.

Whenever an event happens for which one or more triggers are defined, their actions are called
sorted by their priority with a node key determining the current event context and the applica-
tion context parameter. In the normal case, actions are called implicitly as a side-effect of a
graph modification performed by the application, but they can also be raised explicitly using a
special GRAS operation. By raising and handling one of the predefined “synthetic” events, the
event management can also be used for inter-client communication (see also section 5.4).

10. The Smalltalk-based PIE system /GB 82/ which arranges nodes and attributes in different layers is not a
satisfying solution since the runtime of operations increases with the number of layers which have to be
searched (roughly speaking, for each version a new layer is needed which contains the changes relative to
the previous version).
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Up to now, the GRAS system only supports implicit post-events for a restricted subset of all
possible basic graph modifying operations. Especially when using triggers for realizing
constraints, one often wants to execute an action before the event happens and perform the
triggering operation only when the action returns a positive acknowledge.

Another aspect which currently undergoes a major redesign copes with the execution of
actions. As GRAS is a distributed system without shared memory, application-defined actions
must be executed either in the context of the client or in the context of the server. In the current
GRAS version, executing an action is performed in the context of the trigger—defining client
by means of an upcall service within the communication layer. However, this approach is
problematic for certain classes of actions which logically belong to the graph (e.g. dynamic
constraints). These triggers should of course only be defined once for each open graph copy.
Therefore, GRAS will be extended to support persistent triggers which belong to their graphs
and which are executed in the context of the server.

5.3 The Scheme and Attribute Management Layer

Presenting the GRAS system’s basic graph operations, we have neglected one important
requirement. The system has to preserve a graph’s consistency with respect to its graph scheme
by rejecting forbidden graph modifications and by recomputing derived attribute values.
Concerning the documentation example of section 3 (cf. fig. 1), all operations creating e.g. two
emanating Precedes edges at one COMPONENT node must be rejected, and insertions or
deletions of INNER nodes eventually trigger the reevaluation of dependent Position and
Number attributes.

In order to be able to fulfill these tasks, information about a graph’s class hierarchy, its
attribute dependencies and evaluation functions, etc. must be available. Therefore, the GRAS
interface comprises a group of operations for constructing internal graph schemes which
provide all these informations in an efficiently accessible format. Such a graph scheme may be
extended arbitrarily during its whole lifetime so that the upward-compatibility of graph-based
tools and their data structures is guaranteed.

Discussing the realization of this part of the GRAS architecture, we focus onto its most
important task: the incremental evaluation of derived attributes. For this purpose, we have
implemented a variant of the well-known two-phase, lazy attribute evaluation algorithm
(presented e.g. in /Hu 87/) which has already been used successfully within another graph-ori-
ented database management system (Cactis /HK 88, HK 89/). This demand-driven algorithm
uses a potentially cyclic static attribute dependency graph containing all information about
possible attribute dependencies and evaluation rules, and it works as follows:
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(1) Phase 1: The assignment of a new value to an intrinsic attribute or the insertion/deletion of
certain edges trigger the invalidation of all potentially affected derived attributes (propa-
gation stops at already invalid attributes).

(2) Phase 2: The reevaluation of an invalid attribute will be delayed until the first attempt to
read its value. During its then necessary reevaluation, read accesses to other attributes’
values may raise evaluation processes for these attributes, too (a bookkeeping mechanism
guarantees the abortion of the attribute evaluation process in the presence of forbidden
cyclic attribute dependencies).

This rather primitive two-phase algorithm is at least equivalent to all other incremental
attribute evaluation algorithms if

e almost all graph (attribute) changes result in changes of all potentially affected attributes,
e or a graph contains many rarely accessed attributes with often changing values.

Note that both conditions are fulfilled in the case of our Documentation example (and in many
other cases, too). Each insertion or deletion of a section changes Number and Position at-
tributes of all following sections and their subsections, but only Number and Position attributes
of currently displayed sections (and their predecessors) must be up-to-date. For a more de-
tailed discussion of the advantages and disadvantages of different graph-based incremental
attribute evaluation algorithms the reader is referred to /ACR 87, Hu 87, Sc 91b/.

During the adaptation of the algorithm to the special needs of GRAS we encountered one
major problem which has not been addressed yet by the graph attribute evaluation algorithms
of /ACR 87, ACR 89, HK 88, HK 89, Hu 87/: The language PROGRES allows for the
definition of complex n-context attribute dependencies. Therefore, graph modifications at
unrestricted far away locations may influence an attribute’s value. The Documentation specifi-
cation of fig. 1 contains an example for the usefulness of n-context attribute dependencies.
There, the Position of a Section will be computed by incrementing the Position of its preceding
Section (or by assigning the value 1 in the case of the first Section). In order to find this
preceding Section we have to follow a potentially unrestricted number of Precedes edges from
sinks to sources skipping all COMPONENTS without Position attributes (i.e. Paragraphs and
Subparagraphs).

In order to be able to handle these far reaching attribute dependencies, we have introduced the
concept of virtual attributes (cf. /Sc 91b, H6 92/) in GRAS. These attributes are invisible to
application programs, and they even don’t possess values of their own (with exception of an
invalid flag). Their only purpose is to reduce the difficult problem of propagating invalid flags
in the case of n-context dependencies to the already solved 1-context problem. In the case of
our Documentation example we have to introduce one virtual attribute VA4t which propagates
changes of Position attributes across an arbitrary number of COMPONENTS without Position
attributes. Consider e.g. the deletion of the first Section in fig. 7. This operation initiates the
following propagation process:
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Fig. 7 : Cutout of a documentation’s actual attribute dependency graph

(1) the invalidation of the VA## attribute of the first Paragraph in response to the deletion of the
incoming Precedes edge,

(2) the invalidation of the VAt attribute of the next Paragraph in response to the invalidation of
the VA# attribute of the previous COMPONENT,

(3) the invalidation of the Position attribute of the next Section in response to the invalidation
of the VAt attribute of the previous COMPONENT,

(4) and finally the invalidation of the Number and VAtt attributes at the same Section in re-
sponse to the invalidation of its own Position attribute.

All these attributes remain invalid as long as their values are not required by the application,
i.e. they will be recomputed on demand (and propagation processes of subsequent insertions
or deletions immediately stop at already invalid attributes). Reading e.g. the Number attribute
of a Section has the side effect of recomputing Number and Position attributes of all preceding
Sections and of “validating” Vatt attributes of all preceding paragraphs.

Note that the actual attribute dependencies of our documentation graph in fig. 7 do not really
exist in the form of additional edges but will be deduced during the propagation process by
means of the static attribute dependency graph. Fig. 8 displays a cutout of this graph which is a
part of the Documentation graph scheme and contains the following information (cf. fig. 1):
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Fig. 8 : Cutout of the documentation example’s graph scheme

The attributes Number and Position are defined for all nodes being instances of (a type of)
the node class INNER.

The value of an INNER node’s Number attribute depends on the value of its own Position
and the value of the Number of that node which is the source of the always existing and
always unique incoming Contains edgell.

The value of an INNER node’s Position attribute depends on the value of a preceding
node’s (source of an incoming Precedes edge) virtual attribute VAtt.

The virtual attribute VAtt of a COMPONENT node (which is not an INNER node) in turn
depends on a preceding node’s VAtt.

The node class INNER is a subclass of the class COMPONENT and thus inherits the
attribute VA4t but not the accompanying attribute dependencies (in this case).

Instead of this, a redefinition replaces the old attribute dependencies of the node class
COMPONENT by a new one from an INNER node’s VAtt-attribute to its own Position.

In general, attribute evaluation functions are either partial or nondeterministic due to the absence of edges
or the existence of multiple edges of the same type at one node.
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Considering this small example of a graph scheme, the reader might already guess that the
manual introduction of additional (virtual) attributes and their attribute dependencies — in
order to realize n-context dependencies on top of systems like Cactis /HK 89, HK 89/ which
support only 1-context dependencies — would be a very tedious and error-prone task. There-
fore, the language PROGRES supports the formulation of complex dependency rules directly,
and the PROGRES compiler translates these complex rules into a set of simple rules by means
of virtual attributes (cf. /HO6 92/). Furthermore, we believe that the same techniques may be
used to implement the incremental computation of derived relations and complex consistency
constraints in GRAS.

After this short discussion of the attribute and scheme management layer, we conclude with a

final remark about its location in the GRAS architecture. The reasons for implementing this

part of the GRAS system’s functionality beneath its distribution layer and on top of its event

management layer are twofold:

* Services provided by the GRAS server process should be as complex as possible in order to
minimize the communication overhead between servers and clients.

* The necessary supervision of all graph modifications with respect to their consequences for
the values of derived attributes may be implemented efficiently by exploiting the GRAS
system’s event handling facilities.

5.4 The Concurrency Control and Distribution Layer

The top-most architectural layer of GRAS handles concurrency control and distribution. As
described in section 3, GRAS has a two-layered object model: on the fine-grained level the
application operates on nodes and edges, whereas one the coarse-grained level, graphs as
structured collections of nodes are manipulated. both concurrency control and distribution
refer to the coarse-grained level, i.e. graphs rather than nodes are locked and distributed.

Concurrency control within a database system is concerned with preserving data integrity
while keeping data highly available for access. Its importance is determined by the degree of
multi-user access: within a single-user database system, concurrency control is reduced to user
identification, validation, and global access right checks. On the other hand, a multi-user
database system which allows shared access to data needs sophisticated concurrency control
mechanisms down to atomic access operations.

Distribution is realized by a variant of the client-server approach used by most distributed
database systems /DM 90, GJ 91, De 91/. However, instead of using one centralized database
server, GRAS uses a pool of graph servers. Each of these graph servers controls and manipu-
lates one or more graphs. Whenever an application requests access to a graph, it is connected
to a graph server which performs all of its requests for this graph. This graph server is selected
according to following rules:
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(1) If the graph is already open due to a request from another application, the corresponding
graph server is used.

(2) If a graph server exists which is willing to accept another graph, this server is selected. Ac-

ceptance is calculated within the servers based on current host load and number of served
graphs.

(3) Else a new graph server is started. The location of this server is determined by the current
load of a set of trusted hosts. It is even possible to start more than one server on a host.

=) (@ AP
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W, CSCI

CSCI

|

@ : access graph i e :communication channel
A : provide graph i @ : workstation 1

CSCI : client side communication interface

SSCI : server side communication interface

Fig. 9 : A typical distributed GRAS scenario

A special control server keeps track of the mapping of open graphs to graph servers /Zo 92/.
This control server also serializes open and close requests for graphs to avoid race conflicts and
interconnection between different graph servers. Fig. 9 shows a typical scenario with three
client and two graph server processes (without the control server). Notice that both Client, and
Client; access the same graph G3, and that Client, communicates with more than one server.
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The interoperability of clients and servers is realized by inserting a communication layer
consisting of two parts — the client side communication interface (CSCI) and the server side
communication interface (SSCI) — which are linked to them. The procedural database inter-
face as described in the previous sections is offered to clients through the CSCI, which uses a
remote procedure call library to forward calls down to the SSCI of the right server. These
interfaces also are responsible for concurrency control and error handling. Furthermore, they
handle communication failures and client or server shutdown using follow-up-RPCs and
heartbeat protocols.!2

To organize the concurrent accesses of applications to the same graph, GRAS supports an
access group model: each application accessing a graph belongs to a group which has an own
copy of the accessed graph. Groups are a temporary collection of applications which access the
same graph. Groups are created explicitly by one application (which becomes the initial
member of this group), potentially joined by other applications (who want to share their view of
the graph with other members of that group), and terminate implicitly when the last group
member leaves it (by closing the graph).13

Graph access groups have a set of attributes which are established at group creation time and

can’t be changed during their lifetime:

(1) an interaction granularity attribute controlling the intervening of operations from differ-
ent group members,

(2) a name attribute which uniquely identifies the group,

(3) a persistent-modification attribute controlling whether graph changes survive group ter-
mination, and

(4) a unique group attribute indicating that there may be no other groups accessing the same
graph.

The concurrency of members within a group is controlled by the interaction granularity at-
tribute determining exclusive access units within the time space. GRAS supports three differ-
ent levels of interaction granularity: operational, transactional and sessional access. Access
conflicts due to concurrency conflicts are solved by either delaying or aborting the execution of
the conflicting operation (the actual reaction is eligible at operation invocation).

e Operational access provides for a graph locking during the execution of basic GRAS
operations. This is the lowest level of locking over time and, therefore, gives the highest
possible rate of concurrency. Allowing even the concurrent execution of these operations is
possible (although not yet implemented), but should be transparent for the application.

» The next level, transactional access, allows application access only within mutually exclu-
sive top-level transactions. These transactions (like normal transactions within GRAS) can
either be aborted or committed, thereby providing for both the grouping of basic opera-

12. For a more detailed discussion of this techniques, please refer to /An 91/.

13. This is analogous to the UNIX® file access model where a file is physically closed when the last accessor
(using the same handle) closes the graph.
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tions to a complex atomic operation and the basic level of undoing. As the whole graph is
locked for the time frame of the top-level transaction, there can’t occur lock conflicts
during its execution, allowing the application to perform operations without concerning
about other applications. This decoupling of other applications can be seen as a great
advantage, as applications can operate on shared graphs without knowing or even noticing
(besides delay of transaction processing) the presence of other applications. These top-
level transactions are also the units of undo and redo (cf. section 5.1), because the SSCI
automatically checkpoints the graph after each successful top-level transaction.

e Compare this with the sessional access mode which reserves the graph for one group
member. This mode virtually provides for a single-user database system, as accessing the
graph is allowed for exactly one member of the group and all other members are delayed
(or rejected) upon the “graph open” operation. When the active member leaves the group
(by closing the graph), the next pending member of this group becomes the active one.

As groups operate on own copies of the graph, interaction between different groups only take
place when groups terminate. To avoid update conflicts between access groups of the same
graph, at most one group is allowed to replace the original version of the graph by its copy
during termination (and thus making its modifications permanent). The creation of such a
persistent-modification group is denied when there already exists a group with this attribute.
As nonpersistent-modification groups have no permanent effect on the graph, more than one
of these groups is allowed to exist at the same time. Applications joining such groups address
them by their names (supplied at group creation time).

There are at least two reasons for the concept of multiple concurrent nonpersistent —modifica-

tion groups of a graph:

» The initial graph belonging to a newly created group is an exact copy of the final graph of
the last terminated writing group. As lifetimes of reading groups are unrelated, reading
groups may still see an old version of the graph while another writing group already
established a new permanent graph. If only one reading group were allowed, either the old
group would be forced to close or new applications would still see the old version.

* As members of reading groups are allowed to actually modify the corresponding graph
copy, the group copies of graphs can diverge even when starting with identical copies.

The unique group attribute finally requires that only one group for a graph exists at the same
time. It may be used to lock a graph completely, even forbidding the creation of concurrent
nonpersistent—modification groups.

In contrast to other distributed (object-oriented) database systems which exchange data (nor-
mally in page or object units) between clients and servers (e.g. /BOS 91/ or /LLOW 91/), GRAS
doesn’t exchange data but exchanges operation calls and results, a concept e.g. successfully
used in the X Window system /SG 86/. Although data exchange on the physical or logical level
as realized by page servers or object servers shows a better performance in general (because
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much of the actual work can be shifted from the server to the clients), this approach has been

chosen because in most cases, a graph is used either by only one application exclusively or by

many applications for frequent but short times:

* For achieving high performance of exclusively working applications as e.g. an analyzer
checking a large graph, all kind of interprocess communication should be avoided at all,
that is the database engine should better be linked directly to the application.

* And when many applications access a graph for short updates or queries, e.g. when
operating on a project configuration graph, the lock protocols between clients and servers
for ensuring consistency in the case of data exchanges are even more expensive than simple
remote procedure calls.

The layered architecture of GRAS allows a straightforward realization of the direct linking of
one application to a graph server. An implementation is currently underway that even per-
forms an automatic and transparent shift from direct linking to network coupling when a
graph is accessed by more than one application.

6 Performance Evaluation

The presentation of a database system’s functionality and implementation is at least incom-
plete if it isn’t accompanied by some tables and charts which provide the reader with an overall
impression of the system’s performance, and which demonstrate the effects of important
design and implementation decisions.

Therefore, we were looking for a benchmark definition which is tailored to the special needs of
software engineering or hypertext system applications. This benchmark should comprise a set
of operations for creating, querying, and modifying complex object structures containing many
(cross-) references and attributes of rather different size. Furthermore, it should be well-suited
for testing a database system’s capability of efficiently executing different kinds of partial
match queries (i.e. graph traversals) and range queries, and especially for testing the effective-
ness of its incorporated caching and clustering algorithms.

Unfortunately, many benchmarks proposed in the literature do not fulfill these requirements.
For example, all benchmarks — except OO1 — described in /Gr 91/ have been designed for
business-oriented and/or relational database system applications, and even the OO1 bench-
mark for object-oriented database systems /CS 92/ uses a database which contains only one
type of relationship (connecting randomly selected objects), and is therefore not well-suited
for testing the effects of different clustering algorithms with respect to different types of
queries.
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6.1 The Hypermodel Benchmark

Finally, we have selected the so-called hypermodel benchmark /ABM 90/ which does not
propose any delete or structure-oriented update operations but is otherwise well-suited for our
purposes. Its underlying data model is an abstract variant of the documentation example of
section 2 (cf. fig. 1). A hypermodel database’s dominant structure is a totally balanced tree with
fan-out 5. Every NODE within this tree possesses a couple of integer attributes with one of
them playing the role of a unique node key. INNER nodes of this tree are sources of an ordered
one-to-many-relationship (1n-rel.) connecting any node of level n with its five children nodes
at level n+1. An additional hierarchical many-to-many-relationship (mn-rel.) connects each
INNER node with five randomly chosen nodes of the next lower level. Finally, we have a third
type of attributed many-to-one relationships (mla-rel.). Every NODE of the database is the

source of exactly one attributed reference to another randomly chosen node (cf. fig. 10).

node class NODE;

intrinsic key Uniqueld: integer;

intrinsic index Hundred: integer;

intrinsic Ten, Thousand, Million: integer;

derived index MillionIndex: integer = self.Million div 10000;
end;

node class INNER is a NODE end;
node class LEAF is a NODE end;

edge type 1stChild: INNER [0:1] —> NODE [1:1] ; (* ordered one-to-many-relationship with fan-out 5 *)
edge type S5thChild: INNER [0:1] —> NODE [1:1] ; (* represented by 5 different one-to-one-relationships *)
edge type Part: INNER [0:n] —> NODE [0:n] ; (* many-to-many-relationship *)

node class LINK; (* representation of attributed many-to-one-relationship *)
intrinsic OffsetFrom, OffsetTo: integer : = nil;

end;

edge type From: NODE [1:1] —> LINK [1:1] ;

edge type To: LINK [0:n] —> NODE [1:1];

node class TEXT is a LEAF;
intrinsic TextAtt: string;

end;

node class FORM is a LEAF;
intrinsic FormAtt: Bitmap;

end;

Fig. 10 : Cutout of the hypermodel benchmark’s graph scheme
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The LEAF nodes of our tree are instances of two node classes. The majority of them are TEXT
nodes attributed with a sequence of words (between 10 and 100 words). But every 125th node is
a so-called FORM node which possesses a bitmap of a randomly selected size (between 100 x
100 and 400 x 400). Thus, a test database of depth 7 (with levels 0—6) contains 19531 objects
belonging to three different classes, 58591 relationships of three different types, and many
attributes with a total size of more than 6.5 MB.

The benchmark itself comprises operations for

(1) creating the initial test database with clustering along the one-to-many-relationship,

(2) incremental modifications of large text- or bitmap-attributes at a number of randomly se-
lected LEAF nodes

(3) range queries of the form “find all nodes whose integer attribute Hundred/Million has a
value in a randomly chosen interval”,

(4) so-called group lookups (reference lookups), following a specified type of relationship
from 50 randomly chosen sources to their sinks (sinks to their sources),

(5) and finally closure operations, recursively following a specified type of relationship from 50
randomly chosen nodes on level 3 up to 25 steps in the case of the potentially cyclicmla-rel.
with some of them performing attribute read and write operations.

In order to be able to measure the effects of caching and clustering, every test out of groups (2)
through (5) is performed twice. The first run (cold) has to start with empty operating system’s
file buffers and database caches, and the second run (warm) with file buffers and caches the
state of which is determined by the cold run. In total, the hypermodel test suite consists of about
35 different tests with many of them measuring similar performance characteristics of the
underlying database system (at least in the case of our system GRAS). Therefore, the following
charts only display the performance results for significant subsets of all benchmark operations.
These operations and their abbreviations are explained in more detail in fig. 11. For a more
precise description of the whole benchmark the reader is referred to /ABM 90, HPR 90/.

When we started to implement the hypermodel benchmark on top of the GRAS system, we
discovered three major problems with two of them concerning our data model and one of them
concerning the GRAS system’s functionality:

(1) Our simple data model of attributed graphs doesn’t allow for the definition of ordered rela-
tionships. Thus, we were forced to introduce 5 different edge types in order to be able to
distinguish between the 1st, 2nd, 3rd, . . . child node of an INNER nodel4.

(2) Our data model doesn’t support attributed edges. Therefore, attributed relationships are
represented by attributed LINK nodes which are related to their sources and sinks by From
and 7o edges, respectively.

(3) The GRAS system supports partial match queries for indexed attributes but not range
queries for integer attributes. In the case of the Hundred attribute it was acceptable to re-

14. For another reasonable solution of this problem see section 1. There we use only one type of Parent/Child
edge, and we use additional Precedes edges to represent the order of a COMPOSITE node’s children.
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place a range query of the form “find all nodes whose Hundred attribute has value in the
range [X..x+n]” by at most one hundred partial match queries of the form “find all nodes
whose Hundred attribute has the value x, x+1, ...”. But in the case of the Million attribute
we had to introduce an auxiliary indexed attribute whose value is 1/10000 of the value of the
Million attribute. Thus, we were able to replace every Million range query by at most one
hundred MillionIndex partial match queries.

Abbreviation Short description of benchmark operation

C. INNER Creation of all INNER nodes of the database.

C. LEAF Creation of all LEAF nodes of the database, i.e. TEXT and FORM nodes.
C. 1n-rel. Creation of all 1n-relationships (Child edges) of the database.

C. mn-rel. Creation of all mn-relationships (Part edges) of the database.

C. mla-rel. |Creation of all mla-relationships (LINK nodes, 1o and From edges).
Chg. Text c. | Cold search and replace of words in 50 randomly chosen Zext attributes.
Chg. Text w. |Repetition of “Chg. Text c.” with warm cache and same 7Zext attributes.
Gr. Inc./w. |Group lookup for 1n-rel. (traversal of Child edges) starting at 50 nodes.
Gr. mla c./w. | Group lookup for mla-rel. (traversal of From and 7o edges) at 50 nodes.
In* c./w. Closure of Group lookup for 1n-rel. starting at 50 nodes.

mn* c./w. Closure of Group lookup for mn-rel. starting at 50 nodes.

In*-S. c./w. |Same as “In* c./w.” + summing up all visited Hundred attributes.
mla*-S.c./w. |Closure of “Gr. mla c./w.” + summing up all visited Offset attributes.

Fig. 11 : Descriptions and abbreviations of benchmark operations

6.2 Benchmark Results for Different Database Sizes

After this brief description of the hypermodel benchmark, we will now present and analyze the
performance results of its implementation on top of the Modula-2 GRAS interface on the
following hardware platform: a Sun 4/390 in multi-user mode with 32 MB main memory and a
1000 MB CDC IPI 9720 disk under Sun OS 4.1.1.

This implementation does not exploit the GRAS system’s facilities for

* undo/redo of graph modifications,

* event-handling,

e incremental attribute evaluation,

e and communication of multiple clients with multiple server processes.
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Therefore, the benchmark application code and the GRAS system code are both belonging to
the same address space, and their communication is not based on time-consuming rpc-calls!.
Furthermore, the EventManagement and SchemeManagement layers of GRAS are almost
inactive during the whole benchmark. Thus, their contribution to the overall processing time is
negligible. The ChangeManagement layer, on the contrary, spends a considerable amount of
time for creating logs, although all tasks based on these logs — like abortion of transactions,
recovery from system crashes etc. — are not part of the hypermodel benchmark suite, too.

60 ms/operation
: Level 0-3 (164 kB)

: Level 0—4 (800 kB) 190
: Level 0-5 (4300 kB)

50

B0

: Level 0—6 (21000 kB)
40
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ﬂﬂiﬂ mn B

C. INNER C. LEAF C. 1n—rel. C. mn—rel. C.mla-rel. Chg.Textc. Chg. Textw.

Fig. 12 : Create ops. with varying graph size and fixed cache size (4 MB)

The charts of fig. 12 and fig. 13 present the performance results for four databases of different
sizes with each database being five times larger than the next smaller one. All reported times in
these charts and the chart of the following subsection are given in milliseconds and have been
divided by the overall number of affected objects or binary relationships (e.g. the elapsed time
for creating all 3906 INNER nodes of the level 0—6 database is 3906 * 7 milliseconds; cf. fig 12).
Furthermore, the GRAS system’s cache has been set to the required upper limit, i.e. to 4 MB.

15. The implementation of a multiple-client version of the hypermodel benchmark is under way.
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Fig. 12 presents the disk storage consumption of each database and the database creation
times for all types of nodes and relationships as well as the times for updating randomly
selected text attributes. Note that the disk storage consumption of each database is directly
proportional to its net size. Furthermore:

Times reported for creating INNER nodes are identical for all databases but the first one.
This is due to the fact that the benchmark starts with the creation of all INNER nodes and
that all INNER nodes fit into a 4 MB cache.

Times reported for creating LEAF nodes are always higher than those for INNER nodes
(especially in the case of the largest test database). This has the following two reasons:
(1) LEAF nodes possess additional large attributes the creation of which is rather time- and
space-consuming, and (2) each LEAF node will be placed onto the same page asits already
existing INNER parent node (cf. clustering strategy position in subsection 6.3). Therefore,
this operation permanently creates new attribute containing pages and additionally ac-
cesses old node pages. This causes many page faults in the case of the largest database.
Creation times for 1n- and mn-rel. are very low and remain nearly constant for all data-
bases. This is a result of the design decision to store large attributes as well as all relation-
ships (edges) on separate pages. Thus, this operation affects only a small number of edge
containing pages. And additional “node existence” consistency checks, which prevent the
creation of edges between non-existent nodes, demand only read accesses to a limited
number of node containing pages.

Creation times of m1la-rel. are always higher than those for 1n- and mn-rel., and they are
noticeably influenced by a database’s size. To understand this fact, you have to remember
that the creation of one m1la-rel. requires the creation of one attributed node and two edges
(in contrast to the creation of one edge in the case of simple relationships). Therefore, this
operation demands additional write accesses to node containing pages. This leads to a
significantly greater number of “dirty” page transfers from cache to disk (at least in the case
of larger databases).

The operation “Change 7ext attribute cold” has the most significant increase in time from
small databases to large databases. This is a consequence of the fact that all touched
attributes are selected randomly. Therefore, the probability for two Zext attributes belong-
ing to the same page is inverse proportional to a database’s size, i.e. growing databases
require a growing number of page transfers.

Finally, the excellent performance results for the operation “Change 7ext attribute warm”
are easy to explain. In this case all necessary pages are already stored in the database
system’s cache and transferring these pages back to the disk is part of a separate “Close
database” operation (transaction commit only forces log pages but not data containing
pages back to the disk).
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Fig. 13 : Query ops. with varying graph size and fixed cache size (4 MB)

Similar explanations may be given for the query performance results displayed in fig. 13:

* The explanations for cold performance results of all group lookup operations, which follow
outgoing edges at a small number of randomly selected nodes, are the same as those for the

operation “Change 7ext attribute cold”.

* And the explanation of all displayed warm execution results is trivial, too: almost all
accessed data is already present in the GRAS system’s cache. Note that in the case of the
closure operation “In*-S. w.” and “mla*-S. w.” and the level 0—6 database only the
separation of different kinds of data ensures that almost all accessed data fits into a 4 MB

cache (both operations reach about 40% of the nodes of a 21 MB large database).

* Finally, we have to discuss the quite different cold performance results for the closure
operations “In*-S. ¢.” and “mla*-S. c.”. Traversals along 1n-rel. with read accesses to
Hundred attributes initially are more expensive than traversals along m1la-rel. with read
accesses to Offset attributes (read accesses to the larger number of NODE attributes
require more page transfers than read accesses to LINK attributes). This initial effect is
soon compensated by the fact that traversals along 1n-rel. are compatible with our cluster-
ing strategy (strategy position, see subsection 6.3). Therefore, the probability for crossing
page boundaries is almost independent of the database’s size. Traversals along m1a-rel., on
the contrary, lead from randomly selected sources to randomly selected sinks and touch a
considerably greater number of pages. In this case, the probability for crossing page bound-

aries is proportional to the overall database size.
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To summarize, our hypermodel performance results for growing databases and constant cache
size are mainly determined by the following design decisions:

The order in which objects and 1n-relationships are created is compatible with the system’s
clustering strategy along 1n-relationships.

Especially 1n- and mn-relationships are concentrated on a small number of pages; this is
caused by the system’s strategy to store different types of informations on different pages.
The hashing overhead for mapping logical database keys onto physical page addresses does
not noticeably increase with growing database size; this is mainly due to the fact that our
key creation algorithm guarantees an almost equal distribution of data over pages and thus
minimizes the number of used pages and the depth of index trees.

The GRAS paging system, which is responsible for the management of all available cache
space, uses a priority-based LRU-strategy guaranteeing fast access to all currently used log
pages, index pages, and to all frequently and/or recently used data pages.

For similar reasons varying the cache size within a wide range while keeping the database size
constant causes only minor changes of almost all warm performance results and influences the
cold performance results in the same way as varying database sizes do in the presence of a
constant cache (cf. fig. 14).
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Fig. 14 : Varying cache size and fixed graph size (4.3 MB)
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6.3 Benchmark Results for Different Clustering Strategies

The last important parameter, mentioned in the introduction of this section, is the GRAS
system’s clustering strategy. In order to be able to study its influence onto the system’s storage
consumption and its overall performance, we have executed the hypermodel benchmark with
four different node clustering algorithms (cf. subsection 4.2):

(1) Random distribution (random): Nodes are randomly distributed over pages, so that every
page contains about the same number of nodes. The performance results of this method for
graph traversals along the 1n-relationship should be considered as upper boundaries for
the following clustering algorithms.

(2) Heuristic page clustering (page): New nodes receive an internal node key such that they are
stored on a randomly selected position on the same pages as their already existing parent
nodes (with respect to the 1n-rel.) ; therefore, subsequent page splits distribute a parent
node’s children randomly over different successor pages.

(3) Heuristic position clustering (position): New nodes receive an internal node key such that
they are stored on a carefully selected position on the same page as their already existing
parent node. In this case, subsequent page splits normally preserve the physical neighbor-
hood of a parent node’s children (as long as this is possible without producing unbalanced
index trees or almost empty successor pages).

(4) Optimal distribution (optimal): Guided by the application’s knowledge about the final size
and form of the test database it is possible to compute optimal page positions for all nodes
(with respect to breadth first graph traversals along the 1n-rel.). Although the GRAS sys-
tem’s interface offers resources for directly determining a node’s position, this possibility
won’t be used by “normal” applications. The main reason for presenting this method here is
to find lower boundaries for the above mentioned heuristic algorithms.

The chart of fig. 15 presents the anticipated results for all node positioning algorithms. Note
that we were forced to use a very small cache (100 kB) in order produce remarkable execution
time differences between the different clustering algorithms. Considering the increasing
execution times for traversing mn-rel. and the decreasing execution times for creating/travers-
ing 1n-rel. from algorithm random to algorithm optimal, the position algorithm is considerably
better than the page algorithm. For the most important operation, the warm traversal along the
In-rel., the position algorithm even performs as well as the optimal solution.

Concerning the overall database size, the algorithm random outperforms all other algorithms.
This might be due to the fact that a random distribution of data over pages is the best way to
guarantee balanced index trees and to avoid almost empty pages. Therefore, in a number of
cases the strategy random needs the smallest number of page transfers and its performance
results for creating the initial database and for following randomly chosen paths through the
database along mn-rel. are better than those for other algorithms. For similar reasons, the
database size and the cold performance results for closure mn-rel. (MN* c.) of the strategy
page are better than those for the strategies position and optimal.
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Fig. 15 : Different clustering strategies with fixed cache size (100 kB)

Beside these runtime performance comparisons of clustering strategies, we were also curious
to compare page access patterns directly. Therefore, we were looking for some metrics

* which are easy to compute (based on a number of page access counters),

* which do not depend on the database system’s cache or the benchmark’s database size,
» and which are proportional to the expansion of a query and its locality.

The expansion factor (EF) of a query simply measures the overall number of accessed pages. It
is low if all accessed data is concentrated on a very small number of pages. The locality factor
(LF) of a query takes its concrete page access pattern into account. It is high, if all accesses to a
distinct page are not interleaved with accesses to other pages (counted by the metric “inter-
leaving accesses” IA4), and thus the overall number of page faults becomes minimal even in the
case of a cache space which is considerably smaller than the expansion of a query.

With QO being one of the benchmark’s queries (e.g. closure 1n-rel.), T being a certain traversal
strategy for this query (e.g. depth first traversal), S being an arbitrary clustering strategy (e.g.
random), and (OT, OS) being the best traversal strategy and the best clustering strategy for a
given query, our metrics are defined as follows:

EF(Q, §) = no. of touched pages (Q, S) / no. of touched pages (Q, OS)

LF(Q T S) = IA(Q OT OS) [ IA(Q, T S)

IA(Q, T, §) = avg. no. of data accesses between two accesses to same page (O, 1, S)
(= oo, if every portion of data resides on a different page!)
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The paper /TN 92/ already suggests to compare different clustering strategies with respect to
the expansion as well as the locality of a query. But this paper does not contain a proposal for
the definition of the “locality factor”, and proposes an “expansion factor” which is difficult to
compute. This is due to the fact that the suggested formula depends on a database system’s
minimal number of bytes/pages necessary for storing a given number of objects, relationships
etc. This number is not computable without very intimate knowledge about a database sys-
tem’s internal storage layout (in GRAS, the layout of pages even changes from time to time in
order to adapt it to the special needs of a certain application).

Strategy: random page position optimal

EF(In*) 4.6 1.8 2.9 1.0
LF( In* DF) 0 0.17 0.21 0.32
LF( In* BF) 0 0.20 0.25 1.0

Fig. 16 : Expansion and locality factors of different clustering strategies

Fig. 16 contains the expansion and the locality factors of the above introduced clustering
strategies for a depth first traversal (DF) and a breadth first traversal (BF) along the 1n-rel. of
a hypermodel database with levels 0—5. Note

o that the expansion, i.e. the total amount of accessed data, is always independent of the
selected traversal order (therefore, EF is independent of the traversal strategy),

» that the expansion of the strategy random is much greater than the expansion of all other
strategies, although the strategy random creates the smallest database,

» that the strategy page places the traversed part of the database on a smaller number of
pages than the strategy position but is considerably less successfull in minimizing the
locality of both a depth first and a breadth first traversal (the dominant factor for the
number of page faults if the database cache is much smaller than the whole database),

 that for the page, position, and optimal strategy “LF(DF) < LF(BF)” always holds true,
because all these strategies attempt to position children nodes nearby their parents and not
nearby their neighboring siblings,

» thatin the case of the strategy random every portion of accessed data resides on a new page
(— LF(In* DE random) = LF(1n* BE random) = 0 ), and

» that the clustering strategy optimal is most sensible to changes in access patterns
(— LF(In* DFE optimal) ~ LF(In* BE optimal) | 3).

Our conclusions from these analysis results are the following: Time consuming and sophisti-
cated clustering strategies which depend on very specific assumptions about database access
patterns are superior to more heuristically working algorithms with respect to our metrics, but
they might degrade considerably in the case of rapidly changing databases with rather different
applications on top of it. Furthermore, runtime performance results — especially in the case of
warm and not artificially small caches — even show less differences between “dumb” and
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“intelligent” clustering strategies (at least in our system GRAS, where object references and
node attributes are treated differently and stored on different pages). Therefore, the GRAS
system only provides a rather primitive incrementally and heuristically working clustering
algorithm (the aforementioned algorithm posifion), and it does not spend any efforts on
analyzing access patterns of queries or on batch-oriented reorganizations of data clusters (but
its interface allows for the implementation of such algorithms on top of it, as e.g. those
proposed and/or analyzed in /HK 89, BDK 92, GKK 92, TN 92/).

7  Current Status and Ongoing Work

A first prototype of the GRAS system — described in /BL 85/ — was already realized in 1985.
Since this time gradually improving versions of GRAS have been used at different sites within
the software engineering projects IPSEN /Na 90/, Rigi /MK 88/, CADDY /EHH 89/, MERLIN
/PS 92/ and MELMAC /DG 90/. Based on these experiences, almost all parts of the original
prototype have been redesigned and reimplemented.
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BEGIN
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Fig. 17 : Screen dump of the PROGRES/GRAS database development environment
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Nowadays a 60,000 lines of code large stable and efficiently working GRAS version with
multiple-reader/single-writer concurrency control and with interfaces for the programming
languages Modula-2 and C is available as free software!. The implementation of the Client-
ServerDistribution layer has not yet been released. Up to now, a first prototype of multi-client
GRAS shows the feasibility of the selected approach but is subject to further improvements
with respect to its functionality and efficiency.

The realization of a database development environment based on the language PROGRES
comprising a graph browser (a slightly extended version of the system EDGE of the University
of Karlsruhe /Ne 91/), a syntax-aided editor for defining graph schemes and graph rewrite
rules, an incrementally working type-checker, and an interpreter as well as a cross-compiler
(from PROGRES to Modula-2) is nearby completion /NS 91/ and will be available as free
software, too. The screen dump of fig. 17 provides the reader with an overall impression of the
current status of this 300,000 lines of code large environment. There, we have

» one window displaying a cut-out of the documentation graph scheme of fig. 1 (top/right),
* one window displaying an instance of a very small documentation graph (bottom/left),

» onewindow displaying the definition of a graph rewrite rule for appending a new Paragraph

as the last child of a COMPOSITE node (top/left),
* and a cut-out of the generated Modula-2 code for this graph rewrite rule (bottom/right).

Last but not least, an object-oriented Modula—3 version of the system GRAS with enhanced
event handling capabilities and a port to the new ECMA-standard platform PCTE /ECMA 90/
for software engineering environments are under development.
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