6.4 Administration Models and Management Tools

R. Hai, T. Heer, M. Heller, M. Nagl, R. Schneider, B. Westfechtel,
and R. Worzberger

Abstract. One of the vertical columns in the overall process/product model deals
with the cooperation of subprojects I1 and B4. Both study the support for reactive
process management in dynamic development processes. In this section we highlight
the transition from application models developed in subproject I1 to tool models
for reactive management of subproject B4. We summarize our findings w.r.t. the
development of management tool models as well as their connections to application
models. The section focuses on a process-oriented viewpoint. Products and resources
of development processes can be discussed analogously. We identify the missing parts
which need to be further investigated in order to get a comprehensive and integrated
process/product model, here for reactive management.

6.4.1 Introduction

In this section, we describe the transition from application models to executable
tools. The vertical column of the PPM from subproject I1 to subproject B4
is regarded, dealing with reactive process management, see Fig. 6.1. The ap-
plication models capture process-related aspects of work processes within de-
velopment processes in subproject I1, and subproject B4 has developed exe-
cutable tool models to derive process management tools supporting develop-
ment process managers and process engineers. So, this section is to describe
and evaluate the contribution of both subprojects to the dominating problem
of developing a PPM.

The section is structured as follows: First, we summarize the application
models of subproject I1 and the executable tool models of subproject B4
in Subsect. The main part of this section deals with describing the
transition from application models to executable tool models (Subsect. [£.4.3)),
and its relation to the formal process/product model (Subsect. [E44]). We
finish the section by giving open problems and a conclusion.

6.4.2 Application Models and Tool Models

In this subsection we describe the models developed within the subprojects 11
and B4. The integration of these models is addressed in the next subsection.
Summary of Application Models

An overview over the application models and the tool builder’s models relevant
for development process management is given in Fig. In the upper part of
the figure, the IMPROVE application domain models in chemical engineering
are shown:

M. Nagl and W. Marquardt (Eds.): Collaborative and Distributed Chemical Engineering, LNCS 4970, pp. 6211628 2008.
@© Springer-Verlag Berlin Heidelberg 2008

622

R. Hai et al.

1.

| |
i |
i Activity model Actor model | Document model
| |
\Processmodels _____________________ | ________ 1
ewe i
e 5 Y |
| v v i
} process model resource model information model :
} instance (C3) (under development) (under development) :
| |
| ______ | application
models
tool
Al et e T S Rl e i e
: [1 models
| I
1 type-level ! ' !
! | process model — |
| definitions . ! '
! | |
! ! v L ¥ Y !
: instance-level | } resources and products, |
I r0cess } 1| dynamic task nets roles and versions and 1
1 té)m lates ' | (DYNAMITE) relationships relationships !
! P ! (ResMod) (COMA) :
I |
| process | ! process i
| definition ! 1 instance !
aver B e |l !
A,
integrated

graph transformation specification

:

C-code

Fig. 6.7. Application and tool models for management

The object-oriented data model CLiP (Conceptual Lifecycle Process Mo-
del) [14, 19] for product data of the design process and the corresponding
work process, as described in Sects. 2.2 and 2.4, defines partial models
structuring the engineering domain into several working areas. The rela-
tionships between the partial models are also contained in CLiP. For in-
stance, there is a partial model Process Models (details below). Within
Process Models, the model Activity and the model Actor are connected
by the relationship skill.

In this section, we mainly focus on process-related modeling and therefore
we highlight the partial model Process Models (cf. Chap. 2). This sub-
model defines several modeling concepts to express important structures
for work processes like activity class, input and output informa-
tion, tool, goal and their relationships. For example, the Simulation
reactor activity creates the information Reactor simulation result.
This information is defined in the partial model Document model, which
contains the information-related modeling concepts. The resource-related
modeling concepts can be found in the CLiP partial model Actor model.

Administration Models and Management Tools 623

Roles are only implicitly defined, as a skill-oriented approach is used in or-
der to define the work capabilities required for a certain role. For example,
an activity simulation reactor may need actors with a skill Reaction
kinetic knowledge.

2. Work processes on the instance level are modeled by the C3 process mod-
eling notation [116]. On the instance level, complete work processes can
be modeled and analyzed, e.g., to identify potentials as to shorten de-
velopment time. For example, all important aspects of the Polyamide-6
case study used in IMPROVE have been modeled using the C3 process
modeling language (cf. Sect. 1.2). For this purpose, C3 contains elements
to model process-, information-, and resource-related aspects of work pro-
cesses. The basic elements of C3 are activity, role, and information
with relationships like control flow and information flow. Currently,
the clear focus is on the process side while the information models and
role models only cover basic aspects and are currently under development.

Summary of Tool Models

The tool models are displayed in the lower part of Fig. While the semi-
formal application models describe the application domain, the tool models
have to be formal in order to be used for building process management tools.

1. In the center the process model for dynamic task nets (DYNAMITE), the
product model (COMA), and the resource model (ResMod) are shown.
These models are tightly integrated with each other and form an inte-
grated management model allowing to describe development processes on
type level (knowledge) as well as on instance level (concrete projects or
templates).

For example, a dynamic task net resembles a running development pro-
cess with all tasks, resources, and all documents which are created during
the process. Elements of dynamic task nets are task, input parameter,
output parameter, control or feedback flow, data flow, etc.

As stated above, in order to be able to build tools, the execution semantics
have to be formally specified. The models are generic in the sense that
no application-specific information is contained. They form the core of
the process management system AHEAD which supports the interleaved
planning and execution of development processes.

2. The generic models of AHEAD can easily be adapted to an applica-
tion domain or to specific project constraints by defining standard ac-
tivity types, standard workflows, and workflow templates. We have used
the wide spread modeling language UML to model such constraints and
parametrization aspects in an object-oriented way on the class level.
Class diagrams and object diagrams are used to create process model defi-
nitions or process templates, respectively. For example, standard types for
activities can be defined by introducing new classes like Design Reactor

624 R. Hai et al.

or Simulate Reactor within in a class diagram together with relation-
ships between classes, like sequential control flow.

3. The three generic models DYNAMITE, COMA, and ResMod are formal-
ized in graph transformation specifications. Specific adaptations of these
models defined in class diagrams and object diagrams are transformed to
specific graph grammar specifications.

4. Both generic and specific graph specifications are combined and executable
C code is generated from them. This C-code is embedded into a tool
building framework. In our case, the configurable user interface and the
core application logic of AHEAD can be generated semi-automatically as
explained in detail in Sect. 3.4.

The transition between application models to executable tool models cannot
be easily realized. For example, some information which is necessary in a tool
model might not be explicitly modeled on the application layer, as different
aspects are targeted at both layers. In the following section, we describe how
all necessary information is obtained by either adding additional information
or by deriving the information from existing application models.

6.4.3 From Application Models to Tools

In order to offer a domain-specific support system for the management of de-
velopment processes, the information of all tool models is needed to build the
AHEAD system (subproject B4). Additionally, the application models devel-
oped in subproject I1 are exploited to provide the missing context information,
needed to adapt the AHEAD system to a specific context [154].

Instance Level Application Models

On the instance level, dynamic task nets, products, and resources used within
a specific development process are modeled. On the application model side,
similar process information is foremost contained in C3 nets. Application mod-
eling experts create process templates in the form of C3 nets to define best-
practice work processes. These C3 nets can be transferred structurally into
dynamic task nets. Currently, a set of structural restrictions has to apply for
the C3 nets used. Dynamic task nets can be generated on the tool side as the
surrogates of the process templates modeled as C3 nets. We have realized an
integrator for the mapping of C3 nets into dynamic task nets (see Sect. 3.2).

Product-related information can also be contained in C3 nets and be trans-
ferred into dynamic task nets or the product model of AHEAD, respectively.
Currently, we do not extract these data with the integrator. In the C3 net, it
can be captured that input or output documents of activities require a spe-
cific document type. Resource-related information like actors or actor roles
required to perform an activity are, however, carried over into a dynamic task
net.

Administration Models and Management Tools 625
Class Level Tool Modeling: Connection to Application Models

On the class level, we are dealing on the tool side with process model defi-
nitions and process templates to define structural and behavioral knowledge
about processes. This information is located at the class or type level, e.g. task
types, document types etc. and their relationships for a specific context can
be defined.

The CLiP models and domain ontologies can be searched for standard types
of work process activities or document types. The partial models usually con-
tain such elements which have been identified to be of broader relevance to the
respective application domain of the partial model. For example, the activity
type Design Reactor might be contained in a UML class diagram according
to the domain ontology of the partial model Work Processes where the ac-
tivity concept is located. Essentially, the same or similar modeling concepts
are used in CLiP and in the metamodel underlying the process model defi-
nitions and process templates of AHEAD. Currently, the information found
in CLiP models has to be integrated manually into UML class diagrams used
in the AHEAD approach. For example, for the activity type Design Reactor
in CLiP, a new class Design Reactor Task is created in the class diagrams.
In this case, the AHEAD system will allow for the instantiation of tasks with
this specific type in dynamic task nets.

Relationships defined in CLiP models can be reflected in class diagrams by
introducing new associations between classes. Currently, this is not possible
in our approach, as only a limited set of default associations has been imple-
mented to connect classes, like associations denoting control flow relationships
or data flow relationships. We use UML stereotypes to define the type of an
association link between two classes. Up to now, other relationships, e.g., those
with a more semantical character, are neglected, although their integration is
easily possible by simply using additional UML stereotypes as annotations for
associations.

Application Modeling for Tool Adaptations

We use the broadly distributed UML notation for the explicit purpose that
application modeling experts can create process model definitions and pro-
cess templates for AHEAD. Nevertheless, application domain experts and tool
building experts can work together to arrive at such models more quickly until
the application expert has gained enough experience in adopting our specific
use of the UML for process modeling purposes. Specific tasks, like introduc-
ing new unforeseen dependencies between classes or new requirements leading
to necessary technical modifications of AHEAD, can be discussed in a short-
circuit mode of cooperation. By the way, this approach of bringing experts of
different domains closer together, was often followed in the IMPROVE project.

If process model definitions or process templates have been defined to intro-
duce specific adaptations of the otherwise unrestricted generic AHEAD model,

626 R. Hai et al.

some further steps are needed. These steps are only necessary because of the
specific tool generation approach followed in the B4 project, which is based on
the semi-automatic generation of user interface prototypes from graph trans-
formation specifications: (a) First, the tool builder uses a transformation tool
to transform the UML class or object diagrams into graph transformation
specifications, which contain the specific parametrization data for AHEAD. If
no process model definitions are defined, AHEAD uses built-in default types
for tasks and documents etc. (b) Second, the tool builder combines the newly
generated specific graph specification with the generic graph transformation
part containing the AHEAD management model. From this overall specifica-
tion, executable C-Code is generated in an automatic step. (¢) Finally, the tool
builder has to integrate this C-code with the pre-configured user interfaces to
form the overall AHEAD system.

6.4.4 Relation to the Overall Process/Product Model

In this subsection, we look at the application and tool models in order to
present their relations to the layered overall process/product model of Fig. 6.1.

The overall process/product model is decomposed into five layers: appli-
cation model layer, external model layer, internal model layer, mapping layer,
and basic model layer. Going from top to bottom, each layer adds specific
aspects which have not been covered at the layers above. We now discuss the
vertical column (d) regarding reactive management (cf. Fig. 6.1).

The way from application models to tools for reactive management does
not match smoothly with the idea of the overall process/product model de-
veloped so far. We are now going to identify which aspects of each layer are
relevant for reactive management and highlight some open problems.

Layer 1 of the overall process/product model deals with all application do-
main models for the process and its products mentioned in this section. Among
them, we can identify domain knowledge models to structure the application
domain and organizational knowledge models which contain knowledge how
processes are carried out in different subdomains or companies. For example,
work processes modeled by application domain experts on a medium-grained
level can be found on this layer. Similarly, medium-grained product models
and resource models also belong to layer 1.

Layer 2 contains the external models of tools for different users. The user
interface notations used for modeling different process or product aspects of
tools should be found on this layer. Likewise, the representation of complex
commands of the tools is located here, because they offer application-oriented
functionalities for the user. Currently, we do not have such explicitly modeled
external process or product models within IMPROVE. External models are
indirectly introduced on the next layer.

On layer 3, internal models of tools are located. They are best represented
by formal and executable models which are immediately usable to derive tools.
All tool models belong to this layer, such as the AHEAD management model

Administration Models and Management Tools 627

layer 1: application
domain models

partial models and relationships (CLiP)

process partial model | | document partial model | | resource partial model
- = L
L4 A J A J
process models m:(?eﬁ:r::m in resource models
(c3)) g (e.g.in C3)
layer 2: external tool
models (Ul mOdelS) | tool notations | | complex commands | introduced on the layer 3
layer 3: internal con- type-level insl*;r;?e-
ceptual tool models i process
definitions m.o_d‘el
definitions
dynamic task nets Col:a ResMod
 brocess model - - product - ressource
p model - model -

workflow nets
(e.g. XPDL)
- process model -

| graph grammar specification |

v

| C-code |

layer 4: mapping

not explicitly modeled

layer 5: platform models | tool invocation | | data access |

:
|
|
|
|
|
|
|
|
I
|
|
|
I
|
|
| L]
|
|
|
|
|
|
|
|
|
|
|
|
;
|
T
|
|

Fig. 6.8. Application models and tools models

(DYNAMITE, COMA, and ResMod). These models have to ensure that the
user interface and functionality described on layer 2 is fulfilled by the tools.
To be more specific: Ul details are found here, in particular there are specs
for complex commands. How the UI is built is not specified but introduced in
the tool construction process.

Finally, layers 4 and 5 contain models containing all platform aspects and a
mapping from conceptual models to platforms. These models are only relevant
in order to implement the tools independently of specific execution platforms.
As previously mentioned, the realization of the complex tool components on
the basis of operating system processes is handled on this layer. Currently,
the tools for reactive management developed within IMPROVE are limited to
specific operating systems and programming languages. However, AHEAD is
coupled with other tools of IMPROVE using platform services such as access
to document repositories.

628 R. Hai et al.
6.4.5 Open Problems and Conclusions

In this section, we discussed for the vertical column (d) reactive management
how the transition from application models to tools takes place. We focused
on the process-side and explained, how application models and tool models
are related to each other. Finally, we discussed the relation of achieved results
to the process/product model.

Although we have acquired a good understanding of application models
and tool models corresponding to management support on a medium-grained
level, some open problems still remain:

1. It has to be investigated if some of the application models could be ex-
tended in order to match the tool models more closely, or vice versa.
Currently, these model gaps are bridged manually and for specific cases
only.

2. As we stated above, a tool-independent process/product model on the
external model layer is still missing.

3. We have achieved some results regarding the transformation of applica-
tion models to tool-specific models when specific tools are chosen [154]. For
that purpose, we have already described how a framework for the defini-
tion, analysis, improvement, and management of inter-organizational de-
sign processes involving different modeling formalisms and heterogeneous
workflow tools could look like. This framework combines models, method-
ologies, and tools from the IMPROVE project. Its key features are to
bridge the gap between modeling and execution of inter-organizational de-
sign processes and the seamless execution support for dynamic and static
parts of the overall process, both by appropriate process management
systems. These results need to be generalized. For example, a methodol-
ogy could be developed for the extraction of common modeling concepts
and the harmonization of the process models into a single uniform model
which could serve as a mediation model between specific process models.
The same applies for product models.

	Part II Technical Results
	6 Steps Towards a Formal Process/Product Model
	6.4 Administration Models and Management Tools

