Architectural Issues of Adaptive Pervasive
Systems

Mauro Caporuscio, Marco Funaro, and Carlo Ghezzi

Politecnico di Milano
Deep-SE Group - Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32 - 20133 Milano, Italy
{caporuscio,funaro,ghezzi}@elet.polimi.it

Abstract. Pervasive systems are often made out of distributed soft-
ware components that run on different computational units (appliances,
sensing and actuating devices, computers). Such components are often
developed, maintained, and even operated by different parties. Applica-
tions are increasingly built by dynamically discovering and composing
such components in a situation-aware manner. By this we mean that
applications follow some strategies to self-organize themselves to adapt
their behavior depending on the changing situation in which they op-
erate, for example the physical environment. They may also evolve au-
tonomously in response to changing requirements. Software architectures
are considered a well-suited abstraction to achieve situational adaptation.
In this paper, we review some existing architectural approaches to self-
adaptation and propose a high-level meta-model for architectures that
supports dynamic adaptation. The meta-model is then instantiated in
a specific ambient computing case study, which is used to illustrate its
applicability.

Keywords: Pervasive Systems, Software Architecture, Software Evolu-
tion, Context-aware Adaptation.

1 Introduction

Many modern advanced applications are developed as pervasive systems that
support ubiquitous, continuous and smart interactions among humans, autono-
mous devices, and the environment, to realize what is often called ambient in-
telligence. Such systems, sometimes also called open-world systems [I], are char-
acterized by a highly dynamic software architecture: both the components that
are part of the architecture and their interconnections may change dynamically,
while applications are running. New components may in fact be created by com-
ponent providers and made available dynamically. Components may then be
discovered, deployed, and composed at run time, removing pre-existing bindings
to other components. Applications are often highly distributed, i.e., components
are deployed and run on different computational units that may not just be
traditional computers, but also appliances, sensing and actuating devices of dif-
ferent kinds. In many cases, the components that constitute an application are

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 492 2010.
© Springer-Verlag Berlin Heidelberg 2010

Architectural Issues of Adaptive Pervasive Systems 493

also operated and run by decentralized and autonomous entities. It has become
common to use the terms services for such components and service-oriented
architecture (SOA) to indicate the architectural style. In the SOA case, applica-
tions do not have a single ownership and coordination point. Services can only
be invoked remotely through their interface. They are otherwise seen from other
parts of an application only as black-boxes [13].

Dynamic architectures of the kind we described above are created to support
the adaptive and evolutionary situation-aware behaviors that characterize perva-
sive systems. Sometimes it may be useful to distinguish between adaptation and
evolution. Adaptation refers to the actions taken at run time and affecting the
architectural level, to react to the changing environment in which these systems
operate. In fact, changes in the physical context may often require the software
architecture to also change. As an example, a certain service used by the appli-
cation may become unaccessible as a new physical environment is entered during
execution and a new service may instead become visible. Or a certain service
may be changed unexpectedly by the owner of the service and the change may be
incompatible with its use from other parts of the application. Evolution instead
refers to changes that are the consequence of requirements changes. For exam-
ple, a 3-D interface becomes available and must be used instead of a previously
used traditional interface. In the rest of this paper, most of our examples refer to
adaptation, although our approach can also work for certain kinds of evolution.
In general, long-lived pervasive systems require that applications should follow
some strategies to

— detect the relevant changes in the situation in which they operate, such as
the physical environment (or even the changing requirements), and

— react by self-organizing themselves and adapting their behavior in response
to such changes.

Adaptive pervasive systems raise many challenges to software engineering. They
stress the known methods, techniques, and best practices to their extreme and
introduce new difficult problems for which new solutions are needed. The no-
tions of variability and adaptation must permeate all phases, from requirements
to design and validation, and even run time. Indeed, the clear and clean tra-
ditional separation between development time and run time becomes blurring.
Traditionally, changes are handled off-line, during the maintenance phase. In the
new setting, they must be also handled autonomously at run time, as the appli-
cation is running and providing service. To achieve that, software systems must
be able to reason about themselves and their state as they operate, through ade-
quate reflective features available at run time. They must be able to monitor the
environment, compare the data they gather against an expected model, and de-
tect possible situational changes. Whenever a deviation is found, an adaptation
step must be performed, which modifies the software architecture. For example,
the adaptation step might simply perform a new deployment and re-bindings to
different components, or re-binding to different external services. In other cases,
the adaptation strategies may be more complex.

494 M. Caporuscio, M. Funaro, and C. Ghezzi

This paper focuses on software architectures that support run-time adapta-
tion. More specifically, it illustrates a general, high-level reference meta-model
and then illustrates how it can be instantiated and adapted to develop a specific
case-study in the domain of assisted living.

The paper is structured as follows: Section 2 describes related work. Section 3]
illustrates a practical hypothetical example of an adaptive system that serves
as a case-study in a pervasive computing setting. Section Ml introduces the most
important features of the proposed meta-architecture. Section [l describes how
the concepts of the meta-architecture are instantiated in the proposed solution
for the case-study. Finally, Section [6] provides some conclusions and outlines
future work directions.

2 Related Work

Research on dynamically adaptable and evolvable software systems became very
active in recent years. In the early 2000s, IBM promoted a vision, called auto-
nomic computing [10], which focuses on a new generation of software systems
that can manage themselves to achieve their goals in a changing world, through
self-configuration, self-optimization, self-healing, and self-protection. Although
an overview of autonomic computing is out of our scope, and would clash with
space reasons, we will narrow down the focus of our analysis of related work to
architectural solutions enabling self-management. Research in this area has been
focusing on two main issues. On the one side, there has been an exploration of
the architectural styles that best support evolution, due to intrinsic character-
istics of the style. On the other, research has focused on the mechanisms that
can be exploited to achieve adaptation, given a specific architectural model or
a specific style. According to [I7], “An architectural style defines a vocabulary
of components and connector types, and set of constraints on how they can be
combined.” By focusing on architectural styles, it is possible to focus on evo-
lution from an abstract and high-level viewpoint which may enable systematic
and even formal reasoning.

Let us first observe that in the general case, if no specific constraints are
assumed on an architecture, a run-time change that requires dynamic updates
of components or connectors may require suspension of (parts of) an application
to achieve some desirable level of consistency. Managing suspensions can be very
complex. This problem has been faced elsewhere in the literature [11123].

There are styles, however, that facilitate dynamic adaptation. C2 [I4] is a
well known example of an architectural style that achieves this goal. C2 intro-
duces a sharp distinction between computation and communication and strictly
constrains how the application can be built. In particular, every communication
among computational units (components) occurs via bus-like connectors, thus
minimizing component interdependency. The style also imposes topological con-
straints: components can consume data from only one connector and produce
output data only on one connector. Connectors, instead, can accommodate any
number of components or other connectors. Thus every communication is carried

Architectural Issues of Adaptive Pervasive Systems 495

out in an asynchronous way through messages put on and read from connectors.
The C2 style is well suited to supporting dynamic adaptation and evolution.
The application can be easily modified through the addition and/or removal of
components, which can be carried out without suspending any computation.

Other styles than C2 have been scrutinized by Taylor et al. [21I] . In that
paper, a number of architectural styles used by state-of-art software systems are
evaluated according to following criteria:

How and how much the system’s behavior can be changed;
How long the system’s evolution takes to be effective;
— How the state of the system is changed when that system evolves;

— In which environment the system is executing;

Examples of examined styles and corresponding systems are: the publish-sub-
scribe style [7], implemented for example by Siena; the REST style [8] used for
web browsing; the CREST style [6] adopted by AJAX and other JavaScript-
based technologies.

Regarding the mechanisms that can be superimposed to an architectural
model or style to achieve dynamic adaptation, two main research lines emerged
so far. The former is about all the approaches that exploit planning techniques
to cope with unexpected situations, and the second one is based on reactive rule
systems. An early example of planning-based approach has been proposed by
Traverso and Pistore [22], which synthesizes plans starting from OWL-S process
models and a set of prioritized goals. These plans cope with non-deterministic
outputs of services by synthesizing if-then-else constructs to cover all the pos-
sible outputs prescribed by the OWL-S process model [12]. Another planning-
based approach is described by Sykes et al. [I9)20], where a plan is synthesized
starting from goals and available operations. The difference lies in that the non-
deterministic output of actions is handled by synthesizing a reactive plan. A
reactive plan is a plan that for each logical state of the system from which the
goal can be reached, prescribes the action to be taken to move towards the goal.
In this way, even if the system should deviate from the expected behavior, as
long as the goal is reachable by the current state the plan can still suggest a way
to achieve the goal.

The other main approach to adaptation is rule-based, e.g., the Rainbow frame-
work [9]. Rainbow is based on the use of a run-time architectural model. Logical
probes can be deployed on the running system to gather data useful to enable
system evolution and adaptation. Data coming from probes can be aggregated
and then used to update the run-time model. To accomplish this task ad-hoc
components called gauges are introduced. Invariants can be stated about the run-
time model and reactive rules can be written to try to enforce them. Reactive
rules directly manipulate the run-time architectural model and these changes
are automatically reflected in the controlled application.

Another rule-based approach has been developed in our group. It introduces
an autonomic element called SelfLet [3] , its model and its developing framework.
A SelfLet is characterized by a goal and by a course of action (specified through a

496 M. Caporuscio, M. Funaro, and C. Ghezzi

finite state machine) to achieve it, called behavior. In a world populated by Self-
Lets, each of them tries to achieve its goal by exploiting functionalities available
locally or requesting the needed functionalities to other SelfLets. Such request
can be fulfilled both by a SelfLet providing the functionality as a service or by a
SelfLet teaching the requestor how to solve the problem. SelfLets are also able
to evolve and adapt on the basis of their internal state and the environment they
work in. To do so, an autonomic policy is specified through reaction rules. Rules
can manipulate a SelfLet’s behavior by:

— changing the way a service is offered or requested;

— installing a new local service;

— modifying a behavior by adding, deleting or replacing states and transitions
in the finite state machine describing the SelfLet.

Combining local behaviors and reactive rules, a software architect can design
a system able to achieve a global goal relying on a SelfLet population mak-
ing only local decisions. Rule-based approaches are in general computationally
lighter than planning-based approaches, but offer only little support to handling
unforeseen situations since no reactive rule has been written for them.

An approach, the A3 framework, that cannot be classified neither as planning-
based nor as rule-based has also been developed in our group by Baresi and
Guinea [2]. A3 is a component-based framework where components are orga-
nized in groups, created by application designer to decompose the global task
into local sub-tasks. Each group elects a supervisor which both handles commu-
nication from and to the group and monitors the group itself. Groups are dynam-
ically created and destroyed and no constraint is imposed on their topology. The
grouping dynamism allows to cope with changed situations(e.g., a group with too
many components to be effectively handled by a single supervisor). The absence
of topological constraints enables the creation of overlapping groups or even hi-
erarchies to more effectively share information among groups. Thus centralized
systems’ pitfalls are avoided and at the same time the grouping mechanisms
make the framework scale very well even for a large number of components.

The approach we illustrate here differs from most of the related work in that it
aims at providing a meta-architecture through which the proposed architectural
styles and the adaptation mechanisms may be instantiated.

3 Scenario

This section introduces a scenario describing an adaptive embedded system. In
particular, it addresses functional evolution of devices embedding on-demand
software, namely smart set-top boxes for pay-per-view television. The scenario
is further used subsequently to describe the proposed approach.

A set-top box is a device that, connected to a source of signal (e.g., telephone
line or TV cable) and a television, decodes the signal into contents to be dis-
played on the television screen. Next generation set-top boxes will also connect
to TCP/IP networks by enabling users to browse the web, as well as to access
and consume services on-demand.

Architectural Issues of Adaptive Pervasive Systems 497

Service

Repository |
....'-.@..........__ "% Senvicel
l ———.I. ©) ;—'
r—t— * - - = — ! Service2

Pay-per-view

brodcast -
| brodcast

Fig. 1. Scenario

Figure [Il shows a typical scenario where the smart set-top box (1) accesses
the contents broadcast by the TV provider, (2) accesses and browses a trusted
Service Repository (also published by the TV provider) listing the available ser-
vices, and (3) interacts with the selected services by connecting with the relevant
Service Providers. When the set-top box is switched on for the first time, it must
be configured by the user by selecting the required features. Hence, a basic fa-
cility provided by the set-top box supports connection with the TV provider’s
Service Repository (dashed line in Figure[l]), a catalog from which the user may
select the set of services he or she want to access. As we will see, the Service
Repository behaves both as a Registry, which contains the full descriptions of
the services, and as a Repository of components that may be downloaded and
services provided by the TV provider that can be invoked remotely from the
set-top box.

In this setting, possible use cases are: (i) TV on-demand, where the user
chooses which type of contents he or she is interested in, and (i) Service on-
demand, where the user selects the set of services offered by third-party providers.

3.1 TV On-Demand: Pay-Per-View Home Cinema

The set-top box can access both free and pay-per-view TV contents. While free
contents can be directly accessed, in order to consume pay-per-view contents, a
user must possess the rights to access the selected channels. In particular, let the
user be interested in the “Home Cinema” channel. Then, the actions performed
are:

1. User accesses the Service Repository, browses the list of available channels
and selects the “Home Cinema” pay-per-view channel.

2. Once chosen the channel and paid for it, the set-top box automatically down-
loads from the Service Repository the software component needed to decode
the desired contents (e.g., HC), which is broadcast in an encrypted format.
Indeed, this component is chosen by taking into account both the subscribed
channel and the context of the set-top box (e.g., television properties, user
requirements).

3. The HC component is then deployed into the set-top box.

498 M. Caporuscio, M. Funaro, and C. Ghezzi

In this scenario, the set-top box might be reconfigured to support both soft-
ware evolution and context-aware adaptation. As an example of evolution, con-
sider a scenario in which a component is downloaded and deployed to improve
service fruition (e.g., new codec version, component bug-fix). As an example of
adaptation, consider instead the ability of reconfiguring the set-top box with re-
spect to the actual context (e.g., different type of television, server side updates).

3.2 Service On-Demand: eHealth Emergency Management System

As stated above, the set-top box can be used not only to download new contents,
but also to access third-party services. For instance, an e-health service might
be available to manage health alarms from its subscribers. The user may in
this case use the set-top box to send a “health alarm” to the nearest hospital.
Let us assume that the service of interest, namely the “eHealth Emergency
Management” service (HEM), is available in the Service Repository. HEM is
a composite service whose workflow is shown in Figure P2l Namely, it involves
a number of standalone activities: (i) a Hospital Yellow Pages activity (HYP)
that, given a geographical location, returns a list of the nearest hospitals, (i) the
eHealth Management (HM) provided by the hospital and, (iii) a Display Result
(DR) that notifies the workflow results to the final user.

Hospital 4
Displ
Start ¥ Yellow —* eHealth o —epay » Stop
Pages Mng Result

Fig. 2. The “eHealth Emergency Management” workflow

More precisely, the following sequence of steps is performed:

1. User accesses Service Repository, browses the list of available services in the
entire registry and selects “eHealth Emergency Management” (HEM).

2. HEM is implemented as a composite service, where the activities mentioned
above are provided by means of either local components (e.g., DR) or third-
party remote services (e.g., HYP and HM). Hence the Service Repository
sends to the set-top box the code that implements the workflow of Figure
through which both local components and external services are invoked when
the user presses a certain button of the remote control.

Also in the case of service on-demand, the set-top box may reconfigure its
architecture to achieve both software evolution and context-aware adaptation.
As an example of evolution, consider a scenario in which an activity is updated
(e.g., a new requirement is added or the activity interaction protocol is modified).
On the other hand, as an example of adaptation, consider a scenario in which
the set-top box is moved from a location to a different one. By changing the
set-top box location (i.e., context) the list of the nearest hospitals returned by

Architectural Issues of Adaptive Pervasive Systems 499

HYP changes accordingly and, in turn, the alarm must be sent to a new HM.
Since the new HM could rely on a different interaction protocol — e.g., by means
of dial-up — the set-top box needs to be reconfigured in order to adapt to the
new environment (further discussed in Section [).

4 A Reference Meta-architecture

In this section we describe the fundamental concepts and properties that char-
acterize software architectures for adaptive pervasive systems. In particular, we
crystallize them as a reference high-level meta-architecture that specifies the
main distinctive concepts upon which we can define architectural models of self-
adaptive systems. Further, Section [i illustrates a possible architectural solution
for the scenario presented in Section[B]and will show how the architectural model
conforms to the meta-architecture defined herein. Indeed, the proposed meta-
architecture can be instantiated in different ways and even partially in other
practical scenarios.

The meta-architecture illustrated in Figure[3lis reminiscent of, and an enrich-
ment of, the abstract structure of an autonomic element [I0]. In fact, it defines
the main features that characterize a software architecture of applications that
may evolve and adapt their functionalities with respect to a change of either
their requirements or their surrounding environment.

Reli
Relies on 4
Environment 1 1 1
1 Run-Time <=—Queries—— Decision Maker (<—Interprets— Actuator Manipulates:
- Model
Requirement ! ! 1
Updates Queries
K Ut
1.
1 1 Current 1
L—Relies on- Monitor —Updates—= Application | <——Manipulates—
Run-time Model 1 Current
[Application
Sense: 1.4
\% Contains—=> Application
0.* 1 J External
Sensor <=Contains— Environment — Service/
0.*| Component

Fig. 3. Meta architecture for self-adaptive systems

The cornerstone of the proposed meta-architecture is the Requirement entity,
which defines the initial input steering the application assembly, as well as the
application run-time behavior. Indeed, it defines the set of properties that an
application must satisfy at run time. It is worth to note that in this context,
evolution refers to the ability of changing requirements at run time, whereas
adaptation refers to the ability of satisfying the requirements in spite of changes
within the execution environment. This twofold role of requirements demands
for (i) a Decision Maker that assembles an abstract description of the appli-
cation able to satisfy the requirements, and (i) a Monitor that is in charge of

500 M. Caporuscio, M. Funaro, and C. Ghezzi

collecting data about the application’s run-time behavior to verify whether the
requirements are satisfied or not during the execution.

The Decision Maker is an entity that, relying on Requirements, is able to syn-
thesize and assemble an abstract description of the application. The description
is abstract in the sense that it does not deal with implementation details but it
is a process-like description of the application’s behavior specifying (i) which ac-
tivities must be executed to accomplish the task specified by Requirements, (i4)
how the activities interact with one other, and (4i%) the logic needed to assemble
the activities — e.g., referring to the service on-demand scenario in Section [3.2]
the Decision Maker is in charge of synthesizing the workflow in Figure 2l Fur-
thermore, since these operations must be accomplished also at run time, Decision
Maker must consider the application’s run-time situation to analyze on-the-fly if
the application’s behavior adheres to the requirements. Specifically, a situation is
a composite view of both the current state of the application and its surround-
ing environment. Decision Maker retrieves such data by querying Application
Run-time Model and Environment Run-time Model, respectively. If the situation
does not satisfy the requirements (e.g., when the set-top box is moved to a new
location, the health alarm must be sent to a new hospital), a new abstract de-
scription is synthesized and passed to the Actuator, which in turn is responsible
for assembling and deploying the actual application (Current Application — CA).
Specifically, Actuator interprets the abstract description provided by Decision
Maker and handles all the technological means needed to build and bootstrap
the new application — e.g., locating and accessing the software artifacts imple-
menting the workflow activities in Figure 2l Such separation of concerns makes
abstract descriptions technology-agnostic by effectively decoupling the general
description of the application from technology-specific actuation. Hence, abstract
descriptions generated by Decision Maker can be stored and subsequently reused
every time they are required, irrespectively of the technology-specific execution
environment. As an example, given an abstract description we can generate two
equivalent applications, implemented by means of two different technologies, by
providing such an abstract description to two different and technology-specific
actuators.

Furthermore, to properly make decisions about the run-time reconfigurations,
Decision Maker needs to query both the application and the environment run-
time models. In order to be effective, such models should reflect reality as faith-
fully as possible. The monitor collects run-time data from the environment;
specifically, data gathered from External Services/Components that are not part
of Current Application and sensor data that provide relevant information about
the physical environment — e.g., the set-top box position. The result of monitor-
ing can be an update of Environment Run-time Model or of Current Application
Run-time Model. In Figure [l Sensor denotes an abstraction of a device that
provides physical context information. Figure [also distinguishes between the
Current Application (CA) and the other External Services/Components it inter-
acts with, which may change over time.

Architectural Issues of Adaptive Pervasive Systems 501

5 Scenario Implementation

As introduced in Section [the proposed architectural-model for run-time soft-
ware evolution is centered around the use of a run-time model as an abstraction
of the evolving application and the surrounding environment. Further, several
entities, making use of such a model, are devised in order to accomplish run-time
software evolution. In this section, we apply such a reference meta-architecture
to the scenario described in Section Bl and, in particular, we describe how its
entities are mapped to this specific use case.

5.1 Application and Environment Run-Time Models

As mentioned earlier, to properly make decisions concerning the dynamic recon-
figurations to accomplish, the system must be able to reason about itself and
the state of the environment it operates in. To this extent, Current Application
Run-time Model and Environment Run-time Model provide the means through
which a reflective behavior may be achieved.

In order to describe a model for the scenario presented in Section Bl we exploit
a three layer architectural model (depicted in Figured]) where (i) the description
layer describes both the application’s functionality as a workflow containing a
sequence of wvirtual basic actions and the environment as a set of monitorable
virtual elements, and (ii) the implementation layer encapsulates the concrete
implementations to which virtual entities may be mapped. Indeed, the proxy
layer provides a virtualization layer that we use to introduce a further degree of
indirection, thus enabling loosely-coupled relations between virtual objects (i.e.,
basic actions and sensors) and their implementation.

As shown in Figure[d, description layer describes both the application model
and the environment model. The application model comprises the run-time en-
tities that support the enactment of the behavioral model corresponding to the
workflow of the currently active functionality of the set-top box. Since the func-
tionality must be adapted with respect to the actual context, the workflow itself
is not directly bound to the concrete implementations of its actions. Rather, dy-
namic adaptation is achieved by decoupling the virtual basic actions of the work-
flow at the description level from their concrete implementation, thus achieving
the required flexibility supported through dynamic binding.

The implementation layer contains the set of all possible components (called
implementation components) implementing the virtual basic actions specified
within the workflow, as well as other companion components that might be used
to support the computation. Each virtual basic action might be implemented
by several implementation components that vary from each other in terms of
extra-functional properties — e.g., security, performance and reliability. That is,
following the Product Line Architecture (PLA) approach [5], the component-
based model exploited by both prozy layer and implementation layer enables
components to be specified as “variant”, although in our case variant selection
is performed at run time. This allows for specifying the alternatives to consider

502 M. Caporuscio, M. Funaro, and C. Ghezzi

Environment model Application model

)

\{b“‘ Z A . e reales Oisprhay
L L Srarr Py ys— it fstin i Srop
) / Pages &
- y,
‘\Q\ (?L
02' Virtual sensors .~ Virtual basic actions
I
1
i -
: '
5 . !
1 ——
oY s _
&0#' Gl
Q Proxy sensors = - mey components

S
&
G
o) _.
> : -

3@
N | /
\6&6 G
\<° Implementation components

Fig. 4. The three layer run-time model of the application

while mapping virtual basic actions to implementation components. Indeed, al-
ternatives represent the variation points within the run-time model, where the
dynamic adaptation of functionality, with respect to the actual needs (i.e., soft-
ware evolution or context-aware adaptation), can be applied.

In this context, the prozy layer plays the role of filtering layer. That is, the
components belonging to this layer (called prozy components) do not implement
the needed functionality themselves. Rather, they implement the logic for vari-
ant selection, i.e., they choose among the available components the one that
provides the needed functionality and best-fits the requirements — e.g., the most
secure, the most efficient, the most reliable. Furthermore, it is worth noticing
that no assumption is made about how implementation components are actually
implemented. For example, as we will show next, implementation components
can be implemented as clients of external and remotely accessible third-party
Web Services.

In Figure @ the environment model describes the run-time environment in
which the application is executed. In particular, it specifies the set of monitorable
virtual elements constituting the environment and the data they can provide.
The next section describes how such data are made available by means of proxy
sensors through implementation sensors.

5.2 Monitor

Context-aware behaviours and self-reconfiguration require applications to be able
to sense the environment and reason about it. Following the meta-architecture
presented in FigureB], the Monitor entity is in charge of () collecting context data
coming from the Environment constituents (namely Sensor and Application) and

Architectural Issues of Adaptive Pervasive Systems 503

(#4) updating Current Application Run-time Model and Environment Run-time
Model accordingly.

The Environment Run-time Model of Figure[3 maps to Environment model of
Figure [in the description layer. This model describes the set of monitorable
virtual elements constituting the environment and the data they can provide. As
shown in the previous section for virtual basic actions, also virtual sensors are
mapped to their corresponding entities in the proxy layer in order to decouple
their description from the actual implementations (see Figure H]). That is, each
virtual element within the environment is monitored by a proxy sensor belonging
to proxy layer.

The workflow specified by the application model in Figure E is not
environment-agnostic but relies on the set of virtual sensors which constitute
the environment model. Indeed, each virtual basic action in the workflow can
specify the set of virtual sensors (if needed) to be considered for accomplishing its
task. Hence, such a relation must be kept and reflected also at proxy layer where
proxy components rely on environmental context data for selecting the specific
implementation component to bind with. Hence, each proxy component relates
to the proxy sensor needed to gather the environmental context data relevant for
selecting the proper implementation component, as well as for computing their
tasks.

Furthermore, as done for proxy components, also proxy sensors are imple-
mented as implementation components adhering to the three-layer structure of
Figure[d Also in this case, the separation between proxy sensors and implemen-
tation components allows proxy sensors to be implemented by several different
implementation components, then allowing them to be dynamically downloaded
and deployed when needed.

The next section, describes how such context data, retrieved through Monitor
and stored within Environment Run-time Model, is further queried by Decision
Maker and used for actuating the application reconfiguration process.

5.3 Decision Maker and Actuator

So far, we have described the entities used by Decision Maker to achieve its
decisions about run-time reconfigurations, namely those that reify the run-time
models. In this section we are going to explain how such decisions are made by
Decision Maker and further actuated by Actuator.

Specifically, referring to the three-layer model described in Section B.1] de-
cisions that must be made by Decision Maker concern the binding (rebinding)
between a virtual basic action and the proper implementation component. The
proxy component implementing the specific virtual basic action is responsible
for this task. The proxy component therefore plays the role of a decision maker.
Hence, Decision Maker is implemented as the set of prozy components deployed
at the proxy layer, where each proxy component makes decisions regarding the
specific virtual basic action it represents.

While Decision Maker retrieves data about the Environment Run-time Model
through the proxy sensors (see Section [.2]), information about Application

504 M. Caporuscio, M. Funaro, and C. Ghezzi

Run-time Model are kept by the proxy components themselves and represented
as the current binding (i.e., between virtual basic action and implementation
component) and the data that have steered the selection of such a binding. That
is, every proxy component must know:

— which implementation component has been used during previous executions
— which inputs were received (both by the context and by the previous element
in the workflow) that caused that specific binding to be chosen.

The former information is needed to improve performance. In fact, should two
identical execution should take place, there would be no binding overhead. The
latter information is needed to let proxy components be aware of the fact that
a reconfiguration is required. In fact, every change in either the context or the
workflow computation will lead to checking if the actual binding is still valid
or, otherwise change the binding. Validity of a binding ranges from the mere
existence of a target entity that can be reached through the binding, to the fact
that the target meets some optimality criteria for quality attributes.

Specifically, a reconfiguration decision might be made to face the following
three different cases:

1. A proxy component must select a binding for the corresponding virtual basic
action for the first time.

2. A binding between a virtual basic action and its implementation component
is no longer valid.

3. The implementation component fails during the execution.

In case no bindings are in place between virtual basic actions and imple-
mentation components. The proxy components are in charge of selecting the
proper implementation component. The choice is made according to a policy
that may take into account extra-functional properties of the available imple-
mentation components. In the second case Decision Maker must reconfigure the
application, to try to still meet the requirements. That is, a new binding must
be found in order to accomplish the required task. Finally, in the third case the
corresponding proxy component can automatically change the binding using a
substitutable implementation component and restarting the computation from
scratch for the corresponding virtual basic action. Clearly, if no alternatives are
available or all the alternatives fail, the computation specified by the workflow
cannot be carried out and an error message is reported to the user.

Following the meta-architecture presented in Section [which sharply sepa-
rates the abstract description of the reconfiguration from its actuation, once the
reconfiguration description has been made by Decision Maker, it must be passed
to the Actuator, which in turn will apply it to the current instance of the appli-
cation. Indeed, in our specific instantiation of the meta-architecture, the proxy
component chooses the implementation component that must be used and then
passes its reference to the Actuator which will perform the following activities:

1. it downloads and deploys the implementation component referenced to the
proxy component, if needed.

Architectural Issues of Adaptive Pervasive Systems 505

2. it invokes the implementation component just retrieved by passing the pa-
rameters coming from the workflow.

3. it passes back to the workflow the result of the computation coming from
the implementation component.

The logic implementing the Actuator is provided by the proxy layer itself and is
exploited by proxy components every time an invocation must take place.

5.4 OSGi-Based Implementation

Mapping to the proposed reference meta-architecture (see Section H), in this
section we describe how Application, Sensor and FExternal Service/Component
entities contained by the Environment are actually implemented by means of the
OSGi framework.

The scenario presented in Section [B] has been implemented using the OSGi
(Open Services Gateway initiative) component-based framework. Many different
frameworks have been developed so far for component-based programming such
as JavaBeans [18] and COM [16]. Although these systems are widely accepted
as standard component-based frameworks, they are not well suited for our pur-
poses, since they do not allow for components addition and removal at run time.
More precisely, bindings between components are predefined and fixed, making
architectural mutations impossible.

On the contrary, what we need is a framework able to decouple components
by achieving a run-time feature that allows both modification of bindings, and
components addition and removal. To this extent, the OSGi (Open Services
Gateway initiative) [I5] is a module system for Java implementing a dynamic
component model [4]. At a glance, the core part of OSGi defines () bundles (i.e.,
components) that can be installed, started, stopped, updated, and removed at
run time, (i7) the service registry that allows bundles to find new services and
bind to them, and (iii) the execution environment that defines methods and
classes available within a specific platform (e.g., lower-end device, embedded
device, high-end server). As in a service-oriented architecture, an OSGi bundle
can publish its services into the service registry, making them available to other
bundles. The key difference between Web services and OSGi services relies on
the fact that while Web services always require some specific transport layer,
the OSGi services use direct method invocations. This makes OSGi a well-suited
framework for scarce-resource devices.

Referring to the scenario presented in Section [, Figure [B depicts a possible
implementation of the “eHealth Emergency Management” use case. In particu-
lar, the OSGi framework is deployed into the set-top box and contains the set of
bundles implementing both proxy components and implementation components
that relate to the virtual basic actions specified within the HEM workflow (see
Figure [2)).

Still referring to the meta-architecture presented in Section] the Application
Run-time Model and Environment Run-time Model are implemented by means
of the three-layer model discussed in Section Bl where virtual basic actions

506 M. Caporuscio, M. Funaro, and C. Ghezzi

Set-top box P
|
0SGi . ;
6L 5 6L, Service
HEM sensor impl
4 J
wor:flow t. 3 ! HYP,
] Ly
- 4 HYP a-» HYP, Service ;
DR ! proxy impl '
EIOXY \ | HM,
x ' 1
- o impl
V'S = DR, i plrjﬁlv l‘ 5
impl Y HM, | HM
& impl K ‘2
Service

.I.\‘\._./ e

Fig. 5. OSGi implementation of the eHealth Emergency Management System

map straightforwardly to proxy components (i.e., HYP, HM and DR) and their
possible implementations, and virtual sensors are monitored by means of proxy
sensors. For example, in order to locate the hospital that can better manage
the health emergency, the HYP virtual basic action needs contextual data about
the set-top box geo-location and thus it specifies a dependency with the Geo
Location (GL) virtual sensor, which, in turn, is implemented as proxy sensor
and deployed within the set-top box with the intent of monitoring its position.
In particular, referring to Figure

1. A workflow is specified by means of an OSGi bundle (the HEM workflow
bundle) that invokes the functionalities exposed by the proxy components.

2. A proxy component is implemented by means of an OSGi bundle (the HYP,
HM and DR prozy bundles), which is responsible for selecting the proper
implementation component relying on both extra-functional properties de-
clared by the implementation component and contextual data gathered from
pProxy sensors.

3. A proxy sensor is implemented by means of an OSGi bundle (the GL sensor
bundle), which selects the proper implementation component implementing
the required monitoring facility.

4. An implementation component is implemented by means of an OSGi bundle
(the GL1, HYP2, HM;, HM> and DRy impl bundle), which actually imple-
ments the required facility.

In this setting, the HEM workflow is executed as a standard OSGi bundle that
invokes the methods exported by HYP, HM and DR proxy bundles, respectively.
When invoked, HYP selects the closest hospital by relying on the contextual
information provided by GL and returns it to HEM. Clearly GL must be retrieved
by the Service Repository and installed, unless it is already in place. GL can be
in place if another application has already mentioned it as a dependency. After
that, GL will search for all the sensors (local or remote) providing the local
position and will choose between them according to some policy. To enable HYP
to contact GL without the need of hard-coded references, a naming convention

Architectural Issues of Adaptive Pervasive Systems 507

is adopted. That is, proxy sensors have the same name of the corresponding
entities in the run-time environment model. In this way the proxy components
of every downloaded workflow can easily reference local proxy sensors.

It is important to note that the logic responsible for retrieving contextual data
is not application-specific. Rather, once a proxy sensor is downloaded and de-
ployed within the set-top box, it can be accessed and used by many applications
at the same time. Once such information has been retrieved, the HYP bundle
can select the closest HM hospital and send the alarm to it. The result of such
invocation will then displayed on the TV screen through the DR bundle.

As explained above, each prory bundle can select which specific implementa-
tion bundle to bind to, among the ones that are available. Indeed, this function-
ality is provided by means of the OSGi late-binding mechanism, which allows
for searching, filtering and binding bundles at run time. Specifically, there are
three issues regarding such binding selection (refer to Section B3)): (i) a proxy
bundle selects the binding to the corresponding implementation bundle for the
first time, and (74) the binding between a proxy bundle and its implementation
bundle is no longer validll. To face such issues, two strategies are implemented:
the former aims at optimizing extra-functional requirements, whereas the second
one aims at forcing the application to meet its requirements also in a changed
situation.

The first strategy considers extra-functional requirements optimization while
binding a virtual basic action to an implementation bundle. For example, when
the set-top box must execute the virtual basic action corresponding to the eHealth
Manager, two implementations may be available as possible targets for HM: an
implementation bundle able to contact the closest hospital’s web service or an
implementation bundle that can contact the hospital via a standard phone call
transmitting a pre-recorded vocal message. The two alternatives are function-
ally equivalent, i.e. delivery of the alarm message to the hospital is guaranteed
in both cases. They differ, however, in their extra-functional qualities, such as
reliability, performance or cost of connection. A choice can thus be made when
the binding is performed according to some optimization strategy. Notice that
the same decision making logic can be implemented for the proxy sensors. As an
example, the geo-localization proxy sensor could choose between two different
implementation bundle, one implemented through a GPS device and the other
through an IP-based geo-localization remote service. The two implementation-
components may be associated with attributes that specify an accuracy level
and a cost; the choice can thus be made by maximizing a quality figure that
takes both parameters into account.

On the other hand, the second strategy aims at forcing the application to meet
its requirements even in a changed situation. As an example, when the set-top
box moved from its original location to a new location, the box’s environment
changes accordingly. We can also imagine that, during the previous execution
of the HEM workflow, the emergency alarm was sent to the closest hospital by

! Tt is worth noticing that, as discussed in Section [the third issue can be easily
solved by reducing it to the first one.

508 M. Caporuscio, M. Funaro, and C. Ghezzi

a web service provided by the hospital itself. It may happen that, in the new
location, the closest hospital does not provide a web service to handle emergency
alarm. It is clear that the emergency alarm must still be delivered, but the way
it is delivered must be changed to be adapted to the new environment. Thus the
binding established during the previous execution between the eHealth manager
virtual basic action and the HM implementation bundle must be changed. Once
again, the logic for the adaptation is implemented by a proxy component (HM).
In fact, this is the only component in our architecture that knows which is the
current binding and which were the inputs from the previous virtual basic action
in the workflow, as well as the context that caused such binding establishment.
In our use case, given the location change, HM could receive as input a different
“closest hospital”, and this hospital could support the on-line emergency alarm
or not. If the previous communication mode is still supported, then only the web
service address must be updated, otherwise a new implementation bundle must
be retrieved, downloaded, and deployed to be bound to the eHealth manager
virtual basic action.

Notice that a proxy bundle does not directly invoke the selected implemen-
tation bundle. Rather, following the meta-architecture an Actuator is needed
to make the decision application-agnostic. However, in our implementation, the
actuator role is played directly by the OSGi framework through the dynamic
late-binding mechanism. Indeed, every proxy bundle exploits such a mechanism
(that can be logically seen as a proxy layer facility) for selecting and invoking the
corresponding implementation bundle, and retrieve the computational results.
However, if no implementation bundle matching the requirements is available
within the framework, it can be (i) downloaded from the TV providers service
repository by means of the relative facility provided by the set-top box (see
Section []), (i7) published into the OSGi service registry, and (iii) dynamically
invoked at run time.

As few final remarks, concern implementation bundles. They can either im-
plement the required task or be used as a stub to access remote Web Services,
which actually implement the tasks. For example, referring to Figure Bl the DR
bundle, which depends on the specific TV screen attached to the set-top box,
locally implements itself the logic needed to display the workflow outcome on
the TV screen. On the other hand, the HM proxy bundle is implemented by a
set {HM;, HM5} of implementation bundles which in turn grant the access to
HM; Service and HM, Service, respectively. This solution allows for reducing
the computational burden, which is unbearable for scarce-resource devices such
as the set-top box, by delegating the effective implementation to the service
provider side.

6 Conclusions

Open-world systems are characterized by a highly dynamic software architecture
where both components and their interconnections may change dynamically,
while applications are running. Pervasive systems are a notable class of open-
world systems, where the need for dynamic software architectures are needed to

Architectural Issues of Adaptive Pervasive Systems 509

support the situation-aware behaviors that characterize them, namely context-
aware adaptation — run-time actions affecting the architectural level which react
to environmental changes — and software evolution — changes that originate in
the requirements.

In this context, software systems must be able to reason about themselves
and their state as they operate, through adequate reflective features available
at run time. Moreover, they must be able to monitor the environment, compare
the data they gather against the expected model, and detect possible situational
changes. Whenever a deviation is found, an adaptation step must be performed,
which modifies the software architecture.

This paper presented a meta-architecture supporting run-time adaptation and
evolution. In particular, it first described the general, high-level reference meta-
model by discussing its constituent entities and the relations between them. Then
it illustrated how such a meta-architecture can be instantiated and adapted to
develop a specific case-study, namely the “eHealth Emergency Management Sys-
tem”. Such a scenario describes an adaptive embedded system — i.e., a smart set-
top boxes for pay-per-view television — that addresses the functional evolution
and adaptation of on-demand software. We finally demonstrated the applica-
bility of such an approach by implementing the “eHealth Emergency Manage-
ment System” case study through the OSGi component-based framework, which
provides a complete and dynamic component-based programming platform for
scarce-resource devices. In particular, we detailed how the entities specified by
the abstract meta-architecture have been actually implemented within the con-
crete “eHealth Emergency Management System” application.

It is worth noticing that the specific application domain addressed herein —
i.e., pervasive embedded systems — had an impact on the implementation choices
we made, since it presents a set of specific extra-functional requirements. The
fact of dealing with resource-scarce devices asks for implementations to be as
light as possible, while still satisfying the functional requirements. This is the
reason why the abstract application workflow, which might naturally specified by
means of a high-level interpreted language (e.g., XML-based), has instead been
encoded directly into Java, to reduce run-time overhead. This in fact speeds up
execution and eases deployment within the framework by supporting dynamic
installation and removal of applications.

Pervasive embedded systems also have to be dependable. An applications
like the “eHealth Emergency Management System” must provide an acceptable
level service quality even in critical situations. This imposes certain require-
ments on the Decision Maker, which should be able to dynamically reconfigure
the bindings to external components and services to achieve the required self-
healing capabilities. The proposed solution also ensures a level of security and
trust because implementation components are provided through a centralized
and controlled repository. In a more general case, it might be useful to extend
reconfiguration policies beyond just re-binding, e.g. also supporting re-plan of
the workflow on-the-fly.

510 M. Caporuscio, M. Funaro, and C. Ghezzi

The work described in this paper is part of an on-going long-term research ef-
fort that focuses on self-managing situational software systems. Part of this work
addresses software architectures that best match the goals of such systems. One
possible outcome of this particular work would be the identification of a catalog
of architectural solutions that may be adopted in different systems, which would
fit the specific characteristics of the systems under consideration. To gain precise,
reliable, and reusable knowledge about the various solutions, we are currently
engaged in different case studies, ranging from decentralized distributed sys-
tems supporting urban mobility scenarios to emergency-management to rescue
people in mountain areas. Different architectural solutions will be defined and
tried in the case studies, to gain a deep understanding of their potential benefits
and drawbacks, and eventually support the development of the solutions catalog
mentioned above.

Acknowledgements

This research has been Funded by the European Commission, Programme
IDEAS-ERC, Project 227077-SMScom (http://www.erc-smscom.org).

References

1. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and chal-
lenges. Computer 39(10), 36-43 (2006)

2. Baresi, L., Guinea, S.: A-3: Enabling self-adaptation in distributed systems through
group abstraction. Technical report, Politecnico di Milano (2009)

3. Bindelli, S., Nitto, E.D., Mirandola, R., Tedesco, R.: Building autonomic compo-
nents: The selflets approach. In: 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering-Workshops, ASE Workshops 2008, pp. 17-24 (2008)

4. Cervantes, H., Favre, J.-M.: Comparing javabeans and osgi towards an integra-
tion of two complementary component models. In: Proceedings of EUROMICRO
Conference (2002)

5. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley Pub. Co., Reading (August 2001)

6. Erenkrantz, J.R., Gorlick, M., Suryanarayana, G., Taylor, R.N.: From represen-
tations to computations: the evolution of web architectures. In: ESEC-FSE 2007:
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 255-264. ACM, New York (2007)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114-131 (2003)

8. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115-150 (2002)

9. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46-54 (2004)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer, 41-50
(2003)

http://www.erc-smscom.org

11.

12.

13.

14.

15.
16.
17.

18.
19.

20.

21.

22.

23.

Architectural Issues of Adaptive Pervasive Systems 511

Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Trans. Softw. Eng. 16(11), 1293-1306 (1990)

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al.: OWL-S: Semantic markup
for web services (2004)

Nitto, E.D., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly
dynamic, self-adaptive service-based applications. Automated Software Engg. 15(3-
4), 313-341 (2008)

Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: ICSE 1998: Proceedings of the 20th International Conference on Soft-
ware Engineering, Washington, DC, USA, pp. 177-186. IEEE Computer Society,
Los Alamitos (1998)

OSGi Alliance. OSGi service platform, core specification, release 4 (2007)

Platt, D.S.: Understanding COM+. Microsoft Press, Redmond (1999)

Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall, Englewood Cliffs (April 1996)

Sun Microsystems, Inc. JavaBeans, http://java.sun.com/products/javabeans
Sykes, D., Heaven, W., Magee, J., Kramer, J.: Plan-directed architectural change
for autonomous systems. In: SAVCBS 2007: Proceedings of the 2007 Conference
on Specification and Verification of Component-Based Systems, pp. 15-21. ACM,
New York (2007)

Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a com-
bined approach to self-management. In: SEAMS 2008: Softw. eng. for adaptive and
self-managing systems, pp. 1-8. ACM, New York (2008)

Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software
adaptation. In: WICSA/ECSA 2009 (2009)

Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: Mcllraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380-394. Springer, Heidelberg (2004)
Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low dis-
ruptive alternative to quiescence for ensuring safe dynamic updates. IEEE Trans.
Softw. Eng. 33(12), 856-868 (2007)

http://java.sun.com/products/javabeans

	Architectural Issues of Adaptive Pervasive Systems
	Introduction
	Related Work
	Scenario
	TV On-Demand: Pay-Per-View Home Cinema
	Service On-Demand: eHealth Emergency Management System

	A Reference Meta-architecture
	Scenario Implementation
	Application and Environment Run-Time Models
	Monitor
	Decision Maker and Actuator
	OSGi-Based Implementation

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

