
On GS-Monoidal Theories

for Graphs with Nesting

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1,
Alberto Lluch Lafuente2, and Ugo Montanari1

1 Dipartimento di Informatica, Università di Pisa, Italy
{bruni,andrea,gadducci,ugo}@di.unipi.it

2 IMT Institute for Advanced Studies, Lucca, Italy
alberto.lluch@imtlucca.it

Abstract. We propose a sound and complete axiomatisation of a class of
graphs with nesting and either locally or globally restricted nodes. Such
graphs allow to represent explicitly and at the right level of abstraction
some relevant topological and logical features of models and systems,
including nesting, hierarchies, sharing of resources, and pointers or links.
We also provide an encoding of the proposed algebra into terms of a
gs-monoidal theory, and through these into a suitable class of “well-
scoped” term graphs, showing that this encoding is sound and complete
with respect to the axioms of the algebra.

1 Introduction

The use of graphs or diagrams of various kinds is pervasive in Computer Science,
as they are very handy for describing in a two-dimensional space the logical
or topological structure of systems, models, states, behaviours, computations,
and several other entities of interest; the reader might be familiar, for example,
with the graphical presentations of entity-relationship diagrams, of finite state
automata, of static and behavioural UML diagrams (like class, message sequence
and state diagrams), of computational formalisms like Petri nets, and so on.

The advantage of using graphs or diagrams, rather than a linear syntax based
on terms or strings, lies in the fact that graphs can represent in a direct way
relevant topological features of the systems/models they describe, including nest-
ing, hierarchies, sharing of structures, and pointers or links, among others, mak-
ing such features easily understandable also to non-specialists. In several cases
graphs provide a representation of models or systems at the “right” level of
abstraction: often a single graph corresponds to an equivalence class of terms,
up to an axiomatic specification equating systems considered as topologically
indistinguishable. Furthermore, as drawings are always understood “up to iso-
morphism”, if the concrete identities of certain syntactical entities are irrelevant
(for example, the name of the states of a finite state automata), it is sufficient
to avoid depicting them in the drawing (a state is uniquely identified by the
graphical components it is represented with).

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 59–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

60 R. Bruni et al.

Another interesting case where a graphical syntax allows one to get rid of
irrelevant information from the linear syntax is the representation of terms or
formulæ of languages with binding operators (like first-order formulæ with quan-
tifiers, λ-terms with abstractions, terms of process calculi with name restriction
operators, among others). In all such cases, the classical linear syntax actually
considers terms up to α-conversion (i.e., non-capturing renaming of bound vari-
ables or names): a graphical syntax can easily handle this, by representing a
bound variable/name with an unlabelled node and references to it with edges.

Unfortunately, though, graphical representations are much more difficult to
handle and to analyse than linear ones. In general, a graphical model needs to
be encoded into a linear syntax, in order to exploit tools like theorem provers
or model checkers to verify certain properties on it. Typically, a linear syntax
can be defined by introducing an equational signature, whose operator symbols
are interpreted as operations on graphs and where the axioms formalise suit-
able properties of these operators: then the terms of the initial algebra can be
interpreted as graphs.

In this paper we are concerned with graphical notations that treat as first-class
citizens the sharing of possibly bound names as sketched above, as well as the
nesting of structures, a feature emerging as a recurrent pattern in the conceptual
modelling of systems: on the informatics side, one may think of file systems,
composite diagrams, networks, sessions, transactions, locations, structured state
machines, or even XML documents, among others; or one may consider natural
models of computations, like those arising in bioinformatics, equating nesting
with the presence of membranes for molecules in chemical compounds.

As a main contribution, we introduce in Section 2 a visual modelling frame-
work suited for representing systems exhibiting nesting of structures and sharing
of atomic, named resources, as well as both local and global restriction. This
framework consists not only of a class of hierarchical graphs, called NR-graphs,
which allow to represent such systems in a direct, intuitive way, but also of a
standard algebraic presentation, made of a signature and a set of axioms, defin-
ing the algebra of graphs with nesting, called AGN. The two components are
related by a formal result stating that the proposed axiomatisation is sound and
complete, i.e., that equivalence classes of terms of the algebra are in bijective
correspondence with NR-graphs taken up to isomorphism: this relationship is
represented by the top horizontal arrow of the next diagram.

AGN(S, B)/≡A� �

Sec. 4
��

�� �� NR-Graphs over (S, B)� �

Sec. 5
��

GS(Σ•
B) ��

[10]
�� Term Graphs over Σ•

B

This result is not proved directly, but it is obtained, indirectly, by relating the
newly introduced framework of NR-graphs to the well-developed theory of term
graphs. Roughly, term graphs, presented in Section 3, are directed acyclic graphs
over a signature Σ, and they intuitively represent “terms with shared sub-terms”
over Σ: therefore they are inherently simpler than our NR-graphs (they feature
neither nesting nor restriction). An algebraic, equational characterisation of term

On GS-Monoidal Theories for Graphs with Nesting 61

graphs was proposed in [10] exploiting the so-called gs-monoidal theories: it is
analogous to the characterisation of terms built over a signature Σ as arrows
of a cartesian category, the Lawvere theory of Σ, freely generated from the
signature. The bijective correspondence between term graphs and equivalence
classes of gs-monoidal terms is represented by the bottom arrow of the above
diagram.

To relate the two formalisms, we first present in Section 4 an encoding of
the terms of the algebra AGN into terms of the gs-monoidal theory (the left
vertical arrow above): this translation is shown to be sound and complete, i.e.,
two terms are mapped to equivalent gs-monoidal terms if and only if they are
equivalent. Intuitively, this is possible because the nesting of nodes and edges
is encoded faithfully by exploiting a new sort of the signature of term graphs,
introduced to represent locations ; furthermore, global and local restriction are
represented with suitable operators. Next in Section 5 we show that there is a
bijective correspondence between NR-graphs and “well-scoped” term graphs (the
right vertical arrow above): through the composition of this bijection with the
encoding of AGN terms as gs-monoidal terms we obtain the bijection between
the terms of the algebra and NR-graphs.

The bridge between the theories of graphs with nesting and of term graphs
established by the proposed encoding can be used to exploit in the newly intro-
duced framework the rich theory and pragmatics developed for term graphs and
term graph rewriting along the years: we sketch some possible developments in
Section 6. We conclude by reviewing some relevant related works in Section 7
and by proposing some topics of future research in Section 8.

2 An Algebra for Graphs with Nesting and Restrictions

Many notions of hierarchically structured graphs were proposed in the literature
(see Section 7), mostly defined set-theoretically as (hyper-)graphs whose nodes
and edges can be related to other graphs (e.g., by suitable containment mor-
phisms or adjacency relations). Rarely such graphs come equipped with a handy
syntax for representing and manipulating them algebraically, a topic on which
we recently made some progress, building on previously developed notations like
CHARM [11] and other syntactic formalisms for representing plain graphs with
interfaces [14]. We have been also influenced by the notation used in nominal
calculi.

In the present section we introduce the graphs with nesting and restriction,
briefly NR-graphs, as well as an equational axiomatisation for them: the main re-
sult states that equivalence classes of terms of the algebra modulo the axioms are
in bijective correspondence with isomorphism classes of graphs. The hierarchi-
cal graphs we present are based on the following rationale: 1) for flexibility and
visual expressiveness we prefer to deal with hyper-graphs instead of ordinary
two-ended arcs; 2) nesting is seen according to a classical boxes-within-boxes
scheme and applied to edges, while nodes are seen mainly as attaching points
without further containment; 3) nodes can be localised within a single edge, in

62 R. Bruni et al.

which case they are made private and not visible “outside”; 4) nodes can also
be globally available to allow connections across the nesting hierarchy.

2.1 Graphs with Nesting and Restriction

Let us introduce some formal notation. Given a set M we denote by M∗ the
free monoid over M , i.e., the set of finite lists of elements drawn from M , often
denoted by an over-lined letter. The unit of M∗ is denoted by ε. Depending
on the context, we can find it more convenient to denote concatenation just by
juxtaposition (like in e = e1e2...en) or with commas (like in e = e1, e2, ..., en).
Given a list e we denote by e|i its i-th element and by |e| the underlying set of
list elements. For an ordinal n, we write n for the set {1, . . . , n}. We overload
to denote both the length of a list and the cardinality of a set. We use the
symbol � for the disjoint union of sets. We write s ∈ e as a shorthand for s ∈ |e|.
If f : A → B is a function, we denote by f∗ its obvious monoidal extension
f∗ : A∗ → B∗ and by f itself the power-set extension f : 2A → 2B.

All along this section, let S be a set of sorts, B be a ranked set of box labels
with rnk(b) ∈ S∗ for all b ∈ B, and X be a countable set of names. A node is
a pair x : s ∈ X × S, and the operator τ : (X × S)∗ → S∗ applied to a list of
nodes returns the list of their sorts. Note that nodes with the same name but
with different sorts are kept distinct, e.g., x : s1 �= x : s2 if s1 �= s2.

We introduce now the formal definition of our hierarchical graphs. We define
the set NR-Graph of graphs with nesting and restriction and, for a set X of
nodes, the set NR-Graph[X] of such graphs with external nodes X .

Definition 1 (NR-graphs). An NR-graph G ∈ NR-Graph is a tuple G =
〈FN, GR, H〉, where FN is a set of free nodes, GR is a set of globally restricted
nodes with FN ∩ GR = ∅, and H ∈ NR-Graph[FN ∪ GR]. The set of global
nodes of G is given by FN ∪ GR.

An NR-graph H with external nodes X, H ∈ NR-Graph[X], is a tuple
H = 〈LR, E, l, c, ρ〉, where LR is a set of locally restricted nodes (satisfying
LR ∩ X = ∅), E is a set of (hyper-)edges, l : E → B labels each edge with
an element of B, c : E → (X ∪ LR)∗ is the connection function (satisfying
τ(c(e)) = rnk(l(e)) for all e ∈ E), and ρ : E → NR-Graph[X ∪LR] maps each
edge to a graph nested within it.

The depth of an NR-graph with external nodes H = 〈LR, E, l, c, ρ〉 is 0 if E is
empty, and depth(H) = 1 + maxe∈E{depth(ρ(e))} otherwise. The depth of an
NR-graph G = 〈FN, GR, H〉 is the depth of H . We will consider only graphs of
finite depth and with finite sets of edges and nodes.

Figure 1 shows a sample NR-graph of depth 3 which represents a network
system comprising different subnets (net-labelled edges) and workstations (st)
connected through links according to different patterns: each subnet has a sin-
gle access point, while each workstation is attached to two connection hubs (s-
labelled nodes). The top level of the graph is defined as G = 〈{x : s}, {y : s}, H0〉,
with H0 = 〈∅, {e}, {e �→ net}, {e �→ y}, {e �→ H1}〉. G and H0 define the global

On GS-Monoidal Theories for Graphs with Nesting 63

Fig. 1. A sample NR-graph, called G

nodes and the outer net-labelled edge, while H1, which is going to be defined
immediately below, represents the graph internal to edge e.

Note that the global nodes are depicted, with a round shape, at the top of
the graph, as conceptually they do not pertain to any particular location. Also
the name is depicted for free nodes (only x : s, in this case), but not for globally
restricted nodes (like y). All nodes are sorted: the sort is indicated by the inside
label, and in this example all nodes have the same sort s, therefore sometimes
we will omit it. Here is part of the definition of graph H1:

〈{z1, z2, z3}, {f1, f2, f3, f4, f5}, {f1 �→ st, . . .}, {f1 �→ x · y, . . .}, {f1 �→ ∅NR, . . .}〉

For the sake of brevity, we omit the rest of the definition of the NR-graph, but it
should be clear from the drawing. H1 has three locally restricted nodes, that are
depicted as diamonds: they are private to the immediately enclosing edge e and
cannot be referenced from the outside, but they can be shared by the subgraphs
nested within the edge. H1 also contains five edges: f1 is the one labelled by
st, connected to the two global nodes, and not containing anything, which is
represented by ρ(f1) = ∅NR (∅NR is the empty NR-graph). Notice that edges
are represented as ranked boxes, possibly nested, with a label in the upper-right
corner. The rank information consists of the list of sorted tentacles attached to
the box (where the sort of the tentacle is the sort of the node it is attached
to). The ordering of the tentacles is left implicit by counting in clockwise order,
starting from the leftmost tentacle. Nesting of edges and nodes within other
edges is given by spatial containment.

Actually, Fig. 1 does not show precisely the above defined NR-graph G, but
rather its isomorphism class, according to the definition that follows.

Definition 2 (NR-Graph isomorphism). Let G = 〈FN, GR, H〉 and G′ =
〈FN ′, GR′, H ′〉 be two NR-graphs. We say that G and G′ are isomorphic, written
G ∼= G′, if FN = FN ′, there is an isomorphism φ : FN∪GR → FN ′∪GR′ such
that φ(x) = x for all x ∈ FN , and H is φ-isomorphic to H ′, written H ∼=φ H ′.

Let X and X ′ be two sets of nodes, and φ : X → X ′ be an isomorphism. Fur-
thermore, let H =〈LR, E, l, c, ρ〉 be in NR-Graph[X] and H ′=〈LR′, E′, l′, c′, ρ′〉

64 R. Bruni et al.

be in NR-Graph[X ′]. Then H ∼=φ H ′ if there exist isomorphisms φL : LR →
LR′ and φE : E → E′ such that, calling φ̂ : X∪LR → X ′∪LR′ the isomorphism
induced by φ and φL, for all e ∈ E it holds

– l′(φE(e)) = l(e),
– c′(φE(e)) = φ̂∗(c(e)), and
– ρ′(φE(e)) ∼=φ̂ ρ(e).

Thus isomorphisms preserve the identity of free nodes, but not the one of re-
stricted nodes and edges: this explains why only the identities of free nodes are
depicted in Fig. 1.

2.2 The Algebra for Graphs with Nesting

Even if the graphical representation of a system like the one of Fig. 1 is pretty
intuitive and easy to understand for human beings, it might not be usable, e.g.,
as the input of a verification tool needed to analyse it. On the other hand,
the set-theoretical presentation according to Definition 1 does provide a linear
syntax for such graphs, but it is quite involved, as it emerges from the (partial)
definition given by the graphs G, H and H1 above. The main motivation of the
graph algebra we are going to introduce is to provide a much more compact and
intuitively understandable linear syntax for NR-graphs.

Definition 3 (algebra for graphs with nesting and restrictions, AGN).
The terms of the algebra for graphs with nesting (or nested graphs) are gener-
ated according to the following grammar

G ::= 0 | x : s | b[G](y) | G | G | (ν x : s)G | (μ x : s)G

where x : s is a node, b ∈ B, and y ∈ (X × S)∗ is a list of nodes such that
rnk(b) = τ(y).

Roughly, 0 denotes the empty graph; x : s is a discrete graph with a single node
named x of sort s; b[G](y) is a hyper-edge labelled b, whose tentacles are attached
to nodes y and enclosing the graph G; G | H is the disjoint union of graphs G

and H up to common (free) nodes; finally, (ν x : s)G and (μ x : s)G denote the
graph G after making node x : s not visible from the outside (borrowing nominal
calculus jargon, we say that the node x : s is restricted). An AGN term where
no edge b[G](y) appears is called discrete and usually denoted by D. Recall that
each label b ∈ B has a fixed rank rnk(b) ∈ S∗: we only allow well-sorted graphs,
where for any sub-term b[G](y) we have that the (lists of) sorts of b and y coincide
(as required by the constraint rnk(b) = τ(y) in Definition 3).

Notably, we distinguish two kinds of restrictions: (μ x : s)G is called localised
restriction, meaning that the node x : s resides together with the topmost edges
of G, while (ν x : s)G is called global restriction, meaning that the location of
x : s is immaterial. The key difference is that when a graph is enclosed within an
edge, its globally restricted nodes can traverse up the hierarchy (see axiom A8

On GS-Monoidal Theories for Graphs with Nesting 65

(ν x)G (μ y)G b[G](y, z)

Fig. 2. Restrictions and nesting illustrated schematically

in Definition 5), while this is not the case for locally restricted nodes. When it
is not necessary to distinguish which kind of restriction is considered, we write
(ω x : s) using the wildcard ω ∈ {ν, μ}. An AGN term where global restriction
does not occur is called ν-free. Restrictions (ν x:s)G and (μ x:s)G act as binders
for x : s in G, leading to the ordinary notion of free nodes.

Definition 4 (free nodes). The set of free nodes of an AGN term G, denoted
fn(G), is defined inductively as follows:

fn(0) � ∅ fn(x : s) � {x : s} fn(b[G](y)) � fn(G) ∪ |y|

fn(G | H) � fn(G) ∪ fn(H) fn((ω x : s)G) � fn(G) \ {x : s}

As useful shorthands, we shall write b(y) instead of b[0](y) and b[G] instead of
b[G](): intuitively, the former denotes a plain edge, while the latter denotes a
“floating” box (not anchored to any node). Moreover, we write

∏n
i=1 Gi as a

shorthand for G1 | (G1 | (. . . | Gn) . . .)) and we let (ω y)G stand for the term
(ω y|1)(ω y|2)...(ω y|m)G, where m = #y.

Figures 2 and 3 show the general idea for interpreting the operators of our
algebra. We depict a graph as a large oval (see Fig. 2, top-left), with separated
sectors for free nodes (top sector), globally (ν-) restricted nodes (left sector), top-
level locally (μ-) restricted nodes (right sector) and all other nodes and edges
(central sector). This is exemplified by a schematic graph drawn in Fig. 2, top-
right, with a single edge attached to a few representative nodes (at least one of
each kind, omitting their sorts): let us call it G. The second line of Fig. 2 shows
the graphs (ν x)G (node x is moved from the sector of free nodes to that of
globally restricted nodes), (μ y)G (node y is moved from the sector of free nodes
to that of locally restricted nodes) and b[G](y, z) (free nodes are shared between
the enclosing edge and graph G, globally bound nodes are preserved, localised
nodes are enclosed in the top edge, leaving the right sector empty). Figure 3
shows the parallel composition of two generic graphs, obtained by taking the
union of their free nodes and the disjoint union of all the other elements.

66 R. Bruni et al.

G H G | H

Fig. 3. Parallel composition illustrated schematically

Example 1. Figure 4 shows some graphs corresponding to simple terms of our
algebra. Starting from top-left and in left-to-right reading direction we find the
discrete graph x : s, the ordinary plain graphs st(x : s, y : s) and G1 � st(x, y) |
st(y, z), the graphs with restricted nodes (ν y)G1 and (μ y)G1, and the graphs
with nesting net[(ν y)G1](z) and net[(μ y)G1](z).

Fig. 4. Simple examples: x :s (top-left), st(x :s, y :s) (top-centre), G1 � st(x, y) | st(y, z)
(top-right), (ν y)G1 (mid-left), (μ y)G1 (mid-right), net[(ν y)G1](z) (bottom-left),
net[(μ y)G1](z) (bottom-right)

The terms of our algebra are too concrete, in the sense that different terms
may intuitively correspond to the same nested graph (for example, the order in
which we list the edges is obviously immaterial in the graph). Next we provide
an axiomatisation equating those terms that define essentially the same graph.

The axiomatisation includes the structural graph axioms of [11] such as as-
sociativity and commutativity for | with identity 0 (axioms A1–A3) and node
restriction binding (A4–A6). It additionally includes axioms to α-rename bound
nodes (A7), an axiom for the extrusion of globally bound, nested nodes (A8)
that marks the distinction between global restriction ν and local restriction μ,
an axiom for making immaterial the addition of a node to a graph where that
same node is already free (A9) and an axiom ensuring that global nodes are not
localised in lower layers (A10).

On GS-Monoidal Theories for Graphs with Nesting 67

Definition 5 (structural congruence ≡A). The structural congruence ≡A
over nested graphs is the least congruence satisfying

G | H ≡ H | G (A1)
G | (H | I) ≡ (G | H) | I (A2)

G | 0 ≡ G (A3)
(ω1 x : s)(ω2 y : t)G ≡ (ω2 y : t)(ω1 x : s)G if x : s �= y : t (A4)

(ω x : s)0 ≡ (ω x : s)x : s (A5)
G | (ω x : s)H ≡ (ω x : s)(G | H) if x : s �∈ fn(G) (A6)

(ω x : s)G ≡ (ω y : s)(G{y:s/x:s}) if y : s �∈ fn(G) (A7)
b[(ν x : s)G](y) ≡ (ν x : s)b[G](y) if x : s �∈ |y| (A8)

x : s | G ≡ G if x : s ∈ fn(G) (A9)
b[x : s | G](y) ≡ x : s | b[G](y) (A10)

where {y:s/x:s} denotes the capture-avoiding substitution of x : s by y : s and
ω, ω1, ω2 range over {ν, μ}.

It is immediate to observe that structural congruence respects free nodes, i.e.,
G ≡A H implies fn(G) = fn(H) for any G, H.

Next statement establishes the soundness and the completeness of the pro-
posed axiomatisation: the proof is based on the results presented in later sections.

Theorem 1. The equivalence classes of terms of algebra AGN modulo ≡A are
in bijective correspondence with the isomorphism classes of NR-graphs.

Proof. The statement will follow from Propositions 2, 3 and 4.

The translation of AGN terms into NR-graphs is sketched above in Figs. 2
and 3. Vice versa, the intuitive way to express a nested graph as an AGN
term is to start writing the discrete term corresponding to the free nodes of the
graph, then to add arbitrary distinct names for the top-level unnamed nodes,
with the corresponding ν- and μ-restrictions, and finally to list all the top-level
edges, properly attached to the available nodes, and with this procedure applied
inductively to the contents of each edge.

To conclude this section, let us show how the proposed algebra meets the goal
of providing a concise and intuitive linear syntax for NR-graphs.

Example 2. The graph G in Fig. 1 corresponds to the following term GG (where
we omit the node sorts, all equal to s)

(ν y)net[st(x, y) | (μ z1, z2, z3)(st(z3, z1) | st(z1, z2) | st(z2, z3) |
net[(μ z4)(st(z2, z4) | st(z4, z3))](z2))](y)

2.3 A Normalised Form for Terms of AGN

The axioms we just presented allow us to standardise the term-like representation
of nested graphs, by transforming them into an equivalent normalised form. This
form is not unique in general, but the equivalence among terms in this form can
be characterised precisely by the existence of a structural bijection among them,
as explained below.

68 R. Bruni et al.

Definition 6 (normalised form). A term G is in normalised form if either
it is 0, or it has the shape

(ν y)(μ z)(
n∏

i=0

xi : si |
m∏

j=0

bj [Gj](yj))

where n + m > 0, all nodes in y and z are pairwise distinct, all terms Gj for
j ∈ m are ν-free and normalised themselves and, letting X �

⋃n
i=1{xi : si}, we

have #X = n, fn(G) ∪ |y| ∪ |z| = X, and fn(Gj) = X for all j ∈ m.

Proposition 1 (normalised form). For any AGN term G it is possible to
find a ≡A-equivalent term H in normalised form.

Proof (sketch). Roughly, the normalisation proceeds by first α-renaming all the
restricted nodes so to make them pairwise distinct and also distinct from all
the free nodes (axiom A7). Then all the restrictions are moved towards the top
by applying axioms A4–A6 and A8. Note that while any ν-restriction can reach
the top of the term (by A8), μ-restrictions cannot escape from their enclosing
edge. Then, axioms A9–A10 are used to “saturate” each subgraph with all nodes
available. For this task, we point out that (ω x : s)G ≡A (ω x : s)(x : s | G): in
fact, this property is trivial if x : s ∈ fn(G) (by axiom A9), while otherwise it
follows from

(ω x : s)G ≡A (ω x : s)(G | 0) (by axiom A3)
≡A G | (ω x : s)0 (by axiom A6)
≡A G | (ω x : s)x : s (by axiom A5)
≡A (ω x : s)(G | x : s) (by axiom A6)
≡A (ω x : s)(x : s | G) (by axiom A1)

Finally, we exploit axioms A1–A3 to properly rearrange the order of subgraphs
composed in parallel, according to the shape of the normalised form. ��

Example 3. The graph in Fig. 1 can be written in normalised form as the AGN
term (ν y)(x | y | net[(μ z1, z2, z3)(D′

1 | G′
1)](y)), where

D′
1 � x | y | z1 | z2 | z3

G′
1 � st[D′

1](x, y) | st[D′
1](z3, z1) | st[D′

1](z1, z2) | st[D′
1](z2, z3) | net[G2](z2)

G2 � (μ z4)(D′
2 | st[D′

2](z2, z4) | st[D′
2](z4, z3))

D′
2 � x | y | z1 | z2 | z3 | z4

Clearly, the normalised form of a term is not unique, not only because of α-
conversion (axiom A7) but also because of the AC axioms for | (A1 and A2)
and of axiom A4, which allows to switch restrictions of the same type in an
arbitrary way; nevertheless, it can be shown that these are the only sources of
non-uniqueness. In fact, it is tedious but not difficult to prove that two terms
G and H in normalised form are equivalent if and only if they have the same
free nodes, and a suitable partial bijection φ can be established between the

On GS-Monoidal Theories for Graphs with Nesting 69

sets of nodes of their corresponding syntax trees. Quite informally, φ must relate
nodes with corresponding B-labelled boxes and μ- and ν-restrictions, preserving
the nesting w.r.t. B-labelled boxes: essentially it records the permutations that
can be applied to μ- and ν-restrictions of G (using A4) and to B-labelled boxes
(using A1 and A2) in order to transform G into H (up to α-conversion).

The characterisation of the ≡A-equivalence by the existence of a partial bi-
jection is exploited in Section 4 when arguing about the completeness of the
encoding of nested graphs into term graphs.

3 Term Graphs and GS-Monoidal Theories

This section introduces term graphs over a signature Σ as models of the gs-
monoidal theory over Σ, by slightly generalising the main result of [10]: in fact,
we shall consider many-sorted signatures instead of standard one-sorted ones.

Term graphs are defined as isomorphism classes of (ranked) directed acyclic
graphs. Our main concern here is to stress the underlying algebraic structure,
hence the presentation of term graphs slightly departs from the standard defini-
tion. With respect to the way term graphs are defined in the seminal paper [2],
the main differences consist in the restriction to the acyclic case and the handling
of empty nodes. A discussion about the relationship between the categorical and
the traditional definition of term graphs can be found in [10].

Definition 7 (signature). Given a set S of sorts, a signature Σ over S is a
family {Σu,s}u∈S∗,s∈S of sets of operator symbols. For an operator f ∈ Σu,s, we
call u its arity and s its coarity; sometimes we shall denote it as f : u → s.

Definition 8 (labelled graphs). Let Σ be a signature over a set of sorts S.
A labelled (hyper-)graph d (over Σ) is a tuple d = 〈N, E, lN , lE , src, trg〉, where
N is a finite set of nodes, E is a finite set of edges, src : E → N∗, trg : E → N
are the source and target connection functions, and lN : N → S, lE : E → Σ
are the labelling functions, colouring nodes with sorts and edges with operator
symbols. Furthermore, the following conditions must be satisfied

1. the connection functions are required to be consistent with the labelling, i.e.,
for all e ∈ E, lE(e) ∈ Σu,s ⇔ l∗N(src(e)) = u ∧ lN (trg(e)) = s;

2. each node is the target of at most one edge, i.e., for all e1, e2 ∈ E, trg(e1) =
trg(e2) ⇒ e1 = e2.

A node n is empty if there is no edge e ∈ E such that n = trg(e); we shall
denote by N∅ and NΣ the sets of empty and non-empty nodes, respectively (thus
N = NΣ �N∅). A labelled graph d is discrete if E = ∅. A path in d is a sequence
〈n0, e0, n1, . . . , em−1, nm〉, where m ≥ 0, n0, . . . , nm ∈ N , e0, . . . , em−1 ∈ E, and
nk ∈ src(ek), nk+1 = trg(ek) for k ∈ {0, . . . , m − 1}. The length of this path is
m, i.e., the number of traversed edges; if m = 0, the path is empty. A cycle is a
path like above where n0 = nm.

Definition 9 (directed acyclic graphs, dags). A directed acyclic graph or
dag (over Σ) is a labelled graph which does not contain any non-empty cycle.

70 R. Bruni et al.

Fig. 5. Some sample term graphs

In the next definition we equip dags with some attaching points or interfaces,
which will be used later to define suitable operations on them. We assume that
an arbitrary but fixed signature Σ over a set of sorts S is given.

Definition 10 (ranked dags). A (u, w)-ranked dag, with u, w ∈ S∗ (a dag of
rank (u, w)) is a triple g = 〈v, d, r〉, where d = 〈N, E, lN , lE , src, trg〉 is a dag
with exactly #u empty nodes, v : #u → N∅ is a bijection between #u and the
empty nodes of d, called the variable mapping, and satisfying lN (v(j)) = u|j for
all j ∈ #u, and r : #w → N is a function, called the root mapping, satisfying
lN (r(i)) = w|i for all i ∈ #w.

Two (u, w)-ranked dags g = 〈v, d, r〉 and g′ = 〈v′, d′, r′〉 are isomorphic if there
exists a ranked dag isomorphism φ : g → g′ between them, i.e., a pair of bijections
φN : Nd → Nd′ and φE : Ed → Ed′ preserving connections, labels, roots and
variables in the expected way.

Definition 11 (ranked term graphs). A (u, w)-ranked term graph is an iso-
morphism class T = [g] of (u, w)-ranked dags. We write T u

w to recall that T has
rank (u, w).

Figure 5 illustrates the graphical conventions we use by showing three term
graphs over the set of sorts S = {•, s} and the signature Σ = {nu : ε →
s, mu : • → s, net : • s → •, st : •ss → •}. Nodes are depicted as small circles
and edges as rounded boxes, each with the corresponding label inside, but for
•-labeled nodes which are drawn as black circles. For each edge, the nodes in
its source connection are linked with plain lines coming from above and they

On GS-Monoidal Theories for Graphs with Nesting 71

are ordered from left to right, while a down-going arrow connects an edge to its
target node. Clearly, the connection functions are consistent with the labelling;
for example each edge labeled by st is linked from above to three nodes labeled
•, s and s, in this order. By condition 2 of Definition 8 every node has at most
one incoming arrow.

The outer dashed rounded boxes conceptually represent the interfaces of the
term graphs. The top border, on which all the empty nodes are placed, encodes
the variable mapping: an empty node m is in the i-th position (from left to right)
if and only if v(i) = m. The bottom border depicts instead the root mapping:
each “fake” node on it represents an index, and it is connected with a dashed line
to its image. Therefore the three term graphs G, H and K have rank (•ss, •s),
(•ss, •sss) and (•sss, •s), respectively.

It is fair to notice that these graphical conventions are not standard: in other
papers the direction of arrows is reversed, and/or the drawing is flipped vertically.
Our choice is consistent with a data-flow interpretation of such graphs, where
data flows from top to bottom: every node represents a value that is either
produced along the only arrow pointing to it, or that will become available from
the environment if the node is empty (and thus it is a variable). Each value
“stored” within a node can be used several times along the (possibly dashed)
lines that leave downwards. Each edge processes the inputs coming from above
and produces one result in its target node. The data-flow orientation is the
most appropriate one for presenting the encoding of algebra AGN in Section 4,
following the intuitive drawing of hierarchical structures.

We introduce now two operations on term graphs. The composition of two
ranked term graphs is obtained by gluing the variables of the first one with the
roots of the second one, and it is defined only if they correspond in number and
sorts. The union of term graphs instead is always defined, and it is a kind of
disjoint union where roots and variables are suitably concatenated.

Definition 12 (composition and union of ranked term graphs).
Composition. Let T u

w = [〈v, d, r〉] and T ′w
z = [〈v′, d′, r′〉] be ranked term

graphs. Their composition is the ranked term graph Su
z = T u

w; T ′w
z defined as

[〈ind ◦ v, d′′, ind′ ◦ r′〉], where d′′ is obtained from d � d′, the disjoint union of
d and d′ (component-wise on edges and on nodes), modulo the least equivalence
relation such that r(i) = v′(i) for all i ∈ #w (i.e., by identifying the i-th root of
T with the i-th variable of T ′), and ind, ind′ are the inclusions of d, d′ into d′′.

Union. Let T u
w = [〈v, d, r〉] and T ′x

y = [〈v′, d′, r′〉] be ranked term graphs. Their
union or parallel composition is the ranked term graph Sux

wy = T u
w⊗T ′x

y defined as
[〈v′′, d�d′, r′′〉], where v′′ : #(ux) → N∅�N ′

∅ is defined as v′′(i) = v(i) if i ∈ #u,
and v′′(i) = v′(i−#u) if i ∈ {#u + 1, . . . , #(ux)}; and r′′ : #(wy) → N �N ′ is
defined similarly.

Figure 5 depicts G = H ; K, i.e., the term graph G•ss
•s is the composition of H•ss

•sss

and K•sss•s . The operations of composition and union on ranked term graphs
satisfy various algebraic laws, but we refrain from listing them here because

72 R. Bruni et al.

(op)
f ∈ Σu,s

f : u → s
(id)

u ∈ S∗

idu : u → u
(bang)

u ∈ S∗

!u : u → ε
(dup)

u ∈ S∗

∇u : u → uu

(sym)
u, v ∈ S∗

ρu,v : uv → vu
(seq)

t : u → v t′ : v → w

t; t′ : u → w
(par)

t : u → v t′ : u′ → v′

t ⊗ t′ : uu′ → vv′

Fig. 6. Inference rules of gs-monoidal theories

they will follow from the result reported in the next section, showing that term
graphs form the initial model of gs-monoidal theories (see Theorem 2).

3.1 GS-Monoidal Theories

As anticipated in the Introduction, inspired by the seminal work on flownomial
algebras in [12], a sound and complete axiomatisation of ranked term graphs has
been proposed in [10]. This result is analogous to the characterisation of (tuples
of) terms over a signature Σ as arrows of the Lawvere theory of Σ, considered
as the free cartesian category generated by Σ.

However, the categorical framework where such results have been proved is
not relevant here, because we are not interested in the details of the proofs, but
just in the axiomatisation itself, which allows us to represent every ranked term
graph as an expression using suitable operators. The properties of such operators
are described by a set of axioms, and the main fact is that equivalence classes of
expressions with respect to the axioms are one-to-one with ranked term graphs.

The expressions of interest are generated by the rules depicted in Fig. 6: they
are obtained from some basic (families of) terms by closing them with respect
to sequential (seq) and parallel (par) composition. By rule (op), the basic terms
include one generator for each operator of the signature: these are the elementary
bricks of our expressions, and conceptually correspond to the hyper-edges of the
term graphs. All other basic terms define the wires that can be used to build our
graphs: the identities (id), the dischargers (bang), the duplicators (dup) and the
symmetries (sym). Every expression t : u → v generated by the inference rules is
typed by a source and by a target sequence of sorts (u and v, respectively), which
are relevant only for the sequential composition, which is a partial operation. The
next definition presents the axioms imposed on such expressions.

Definition 13 (gs-monoidal theory). Given a signature Σ over a set of sorts
S, the gs-monoidal theory GS(Σ) is the category whose objects are the elements
of S∗ and whose arrows are equivalence classes of gs-monoidal terms, i.e., terms
generated by the inference rules in Fig. 6 subject to the following conditions

– identities and sequential composition satisfy the axioms of categories
[identity] idu ; t = t = t ; idv for all t : u → v;
[associativity] t1 ; (t2 ; t3) = (t1 ; t2) ; t3 whenever any side is defined,

On GS-Monoidal Theories for Graphs with Nesting 73

Fig. 7. The term graphs corresponding to the basic arrows of the gs-monoidal theory

– ⊗ is a monoidal functor with unit idε, i.e., it satisfies
[functoriality] iduv = idu ⊗ idv, and
(t1 ⊗ t2) ; (t′1 ⊗ t′2) = (t1 ; t′1) ⊗ (t2 ; t′2) whenever both sides are defined,
[monoid] t ⊗ idε = t = idε ⊗ t t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2) ⊗ t3

– ρ is a symmetric monoidal natural transformation, i.e., it satisfies
[naturality] (t⊗t′) ; ρv,v′ = ρu,u′ ; (t′⊗t) for all t : u → v and t′ : u′ → v′

[symmetry] (idu ⊗ ρv,w) ; (ρu,w ⊗ idv) = ρu⊗v,w ρu,v ; ρv,u = idu⊗v

ρε,u = ρu,ε = idu

– ∇ and ! satisfy the following axioms
[unit] !ε = ∇ε = idε

[duplication] ∇u ; (idu ⊗∇u) = ∇u ; (∇u ⊗ idu) ∇u ; (idu⊗!u) = idu

∇u ; ρu,u = ∇u

[monoidality] ∇uv ; (idu ⊗ ρv,u ⊗ idv) = ∇u ⊗∇v !uv =!u⊗!v

A wiring is an arrow of GS(Σ) which is obtained from the rules of Fig. 6
without using rule (op).

Notice that the definition of wiring is well-given, because any operator symbol
introduced by rule (op) is preserved by all the axioms of the theory.

Given the above definition, the main result of [10] is summarised as follows.

Theorem 2 (axiomatisation of ranked term graphs [10]). Let Σ be a
signature over a set of sorts S and let u, v ∈ S∗. Then there is a bijective
correspondence between term graphs over Σ of rank (u, v) and arrows of the gs-
monoidal theory of Σ, GS(Σ), from u to v. In particular, wirings from u to v
are in bijective correspondence with discrete term graphs of rank (u, v).

Just to give a feeling on how the correspondence stated by the theorem works, the
term graph denoted by a gs-monoidal term generated by the rules of Fig. 6 can be
built by structural induction: Fig. 7 shows the ranked term graphs corresponding
to the basic terms introduced by rules (op), (id), (bang), (dup) and (sym),

74 R. Bruni et al.

assuming that u = x1, x2, · · · , xn and v = z1, z2, · · · , zm; instead, rules (seq) and
(par) correspond to the operations of composition and of union as introduced in
Definition 12. For example, the (equivalence classes of) terms tH � [((∇•⊗ids) ;
(id•⊗ρ•,s) ; (net⊗mu⊗nu))⊗ ids] : •ss → •sss and tK � [(((∇•⊗ids⊗∇s) ;
(id• ⊗ ρ•,ss ⊗ ∇s)) ⊗ ids) ; (st ⊗ ((id•s ⊗ ρs,s) ; ((st ;!•) ⊗ ids)))] : • sss → •s
denote, respectively, the term graphs H and K from Fig. 5, while G corresponds
to tH ; tK .

In the following we shall assume that ⊗ has precedence over ;, hence in the
example above we can write for example tH � [(∇•⊗ ids ; id•⊗ρ•,s ; net⊗mu⊗
nu) ⊗ ids] : •ss → •sss, omitting several brackets.

An easy corollary of Theorem 2, that we will need later on, states that each
wiring of GS(Σ) denotes a suitable sort-preserving function.

Corollary 1. Let u, v ∈ S∗. Then the wirings of GS(Σ) from u to v are in
bijective correspondence with the set of functions {k : #v → #u | u|k(i) =
v|i for all i ∈ #v}.

In fact, each wiring from u to v denotes a discrete term graph of rank (u, v),
which is uniquely determined by its root function.

4 From AGN Terms to Term Graphs

In this section we define a translation from the terms of the algebra AGN
introduced in Section 2 to equivalence classes of terms of the gs-monoidal theory
of a suitable signature, and therefore, by Theorem 2, to term graphs over that
signature. Disregarding for the moment the technical details, the intuition behind
the translation is quite simple: the nesting of edges is rendered in a term graph
by a tree-like structure made of nodes of a special sort, representing locations;
free nodes are mapped to variables; and each restricted node is encoded as the
target node of a special constant.

As a first step, we introduce the signature over which the term graphs obtained
by the translation of the terms of AGN are defined.

Definition 14 (signature Σ•
B). Given the set of sorts S• = S∪{•}, assuming

that • �∈ S, the signature Σ•
B over S• is defined as follows

Σ•
B = {b : •, rnk(b) → • | b ∈ B} ∪ {νs : ε → s, μs : • → s | s ∈ S}

Intuitively, each box label b ∈ B corresponds to an operator symbol, having as
arity the rank of b preceded by •, and • as coarity. The new sort • has a special
role in our encoding, because it represents the locations in a graph with nesting.
An edge labelled with the operator b will be connected (by its first source) to the
node representing the location where it lies, and it will “offer” a new location
(the target connection), conceptually corresponding to its interior. Furthermore,
the signature includes the operator symbols νs and μs for each sort s: these
will be connected through their target connection to the node they restrict; μs

On GS-Monoidal Theories for Graphs with Nesting 75

additionally has one source of type •, which matches with the intuitive definition
of “localised restriction”.

A term G of the algebra AGN has a set of
free nodes fn(G) which are used as an interface
to the environment, as seen in Section 2. Instead,
the “interface” of a term graph is a pair of lists
of sorts, forming its rank. Each term G will be
translated to a term graph having an empty list
of roots, and a linearisation of the free nodes of
G as variables (as exemplified in the figure on
the right): therefore the translation is paramet-
ric w.r.t. an assignment, i.e., a function which
assigns a positional index to each free node of
the term.

A generic term G of AGN as

a term graph (with fn(G) =

{x1 : s1, · · · , xn : sn})

Definition 15 (Assignment). An assignment is a function σ ∈
⋃

n∈N
{f : n →

X×S | f is injective}. An assignment σ : n → X×S for a given n ∈ N is uniquely
determined by a list of nodes without repetitions (because it is injective), namely
σ(1), σ(2), . . . , σ(n): we shall often represent it this way and write x : s ∈ σ as a
shorthand for x : s ∈ img(σ), the image of σ.

In the following, by τ(σ) we denote τ(σ(1), σ(2), . . . , σ(n)), i.e., the sequence of
sorts of the nodes in img(σ). Furthermore, for a given list of nodes y ∈ (X ×S)∗

and an assignment σ such that |y| ⊆ img(σ), we let kσ
y : #y → #σ be the

function such that kσ
y (i) = σ−1(y|i) for all i ∈ #y.

Definition 16 (Encoding AGN into gs-monoidal terms). Let G be a term
of AGN over sorts S, box labels B and names X , and let σ = x1 : s1, . . . , xn : sn

be an assignment. We say that �G�σ is well-defined if fn(G) ⊆ img(σ); in this
case, �G�σ is a term graph of rank ((•, τ(σ)), ε) over the signature Σ•

B, defined
by structural induction as follows (recall that ⊗ has precedence over ;)

– �0�σ = [!•,τ(σ)] : •, τ(σ) → ε

– �x : s�σ = [!•,τ(σ)] : •, τ(σ) → ε

The encodings �0�σ and �xi : si�σ, graphically,

assuming σ = x1 : s1, . . . , xn : sn and i ∈ n.

– �b[G](y)�σ = [id• ⊗ ∇τ(σ) ; (id• ⊗ wir(k) ; b) ⊗ idτ(σ)] ; �G�σ : •, τ(σ) → ε,
where the gs-term wir(k) : τ(σ) → rnk(b) is any representative of the
wiring uniquely determined (according to Corollary 1) by the function k �
kσ

y : #rnk(b) → #σ defined above (see also Fig. 8)

– �G|G′�σ = [∇•,τ(σ)] ; �G�σ ⊗ �G′�σ : •, τ(σ) → ε

76 R. Bruni et al.

�b[G](y)�σ

�G|G′�σ

�(ν x : s)G�σ

�(μ x : s)G�σ

Fig. 8. The encoding of the terms of algebra AGN, graphically

– �(ν x : s)G�σ = [id•,τ(σ) ⊗ νs] ; �G{y:s/x:s}�σ,y:s : •, τ(σ) → ε
where y : s = fresh

G
(x : s, σ)

– �(μ x : s)G�σ = [(∇• ; id• ⊗ μs) ⊗ idτ(σ)] ; �G{y:s/x:s}�y:s,σ : •, τ(σ) → ε
where y : s = freshG(x : s, σ)

In the last two rules, fresh
G
(x:s, σ) is a function returning x:s itself if x:s �∈ σ, and

returning a fresh s-sorted node (not appearing neither in σ nor in G) otherwise.
Notice that �0�σ and �x : s�σ are defined in the same way, but the first is defined
for any σ, while the second one is defined only if x : s ∈ σ.

Our first main result shows that the encoding is sound w.r.t. the equivalence
≡A, i.e., that ≡A-equivalent AGN terms are mapped to the same term graph.

On GS-Monoidal Theories for Graphs with Nesting 77

Theorem 3 (soundness). Let G and H be two terms of algebra AGN over
sorts S, box labels B and names X such that G ≡A H. Then, for any assignment
σ: 1) �G�σ is well-defined iff �H�σ is such; 2) �G�σ = �H�σ when well-defined.

Proof (sketch). Item 1) follows by the fact that G ≡A H implies fn(G) = fn(H).
To prove item 2), one should show that each axiom A1–A10 from Definition 5

is preserved by the encoding, i.e., that the encoding of the left-hand side of each
axiom can be proved equal to the encoding of the right-hand side by exploiting
the axioms of gs-monoidal theories (see Definition 13). Note that for axioms
A4–A7 one has to consider separately the cases for ν and μ. The detailed proof
is omitted for space constraints. ��

The second main result of this section states that the encoding is complete w.r.t.
the equivalence ≡A, i.e., that any two AGN terms mapped to the same term
graph must be ≡A-equivalent.

Theorem 4 (completeness). Let G and H be two terms of algebra AGN
over node sorts S, box labels B and variables X . If for all assignments σ it holds
�G�σ = �H�σ, then G ≡A H.

Proof (sketch). Let us assume, without loss of generality, that terms G and H

are in normalised form, and that for all assignments σ it holds �G�σ = �H�σ.
Then they must have the same free nodes, because if fn(G) �= fn(H), then it
is immediate to find a σ for which only one between �G�σ and �H�σ is defined,
contradicting the hypothesis. Next, taken a generic σ such that fn(G) ⊆ img(σ),
it can be shown that the rules for the encoding � �σ induce a suitable partial
bijection between the nodes of the syntax tree of G and the edges of the term
graph �G�σ (see also Fig. 8). Since �G�σ = �H�σ, these partial bijections can be
composed obtaining a partial bijection between the nodes of G and those of H,
which allows us to conclude that they are ≡A-equivalent, by the considerations
at the end of Section 2.3. ��

We conclude this section by showing in Fig. 9 the term graph �GG�σ, obtained by
applying the encoding of Definition 16 to the NR-graph of Fig. 1 (see Example 2
for the defining expression of GG), with substitution σ = {x : s}. Because of
layout constraints, the term graph is rotated counter-clockwise, exposing the
variable mapping on the left border.

5 From Term Graphs to Graphs with Nesting

In this section we prove that there is a one-to-one correspondence between the
term graphs obtained by encoding terms of the algebra AGN and the NR-graphs
introduced in Section 2: this will conclude the proof of Theorem 1.

The first point we address is whether or not the encoding presented in the
previous section is surjective, i.e., if any term graph in GS(Σ•

B) is the image of
some term of the algebra AGN (for some σ). As our encoding maps to term
graphs of rank (•u, ε) only (with u ∈ S∗), the answer is clearly negative in

78 R. Bruni et al.

Fig. 9. The term graph �GG�σ (see Example 2 and Fig. 1)

general. However, even if we restrict to consider term graphs of rank (•u, ε),
where u ∈ S∗, the mapping is not surjective. The crucial fact is that the scoping
discipline of μ-restriction restricts the visibility of a locally restricted node x : s
in such a way that it cannot be used from edges outside the one where (μ x : s)
appears, but such a node scoping discipline has no counterpart in term graphs.

Example 4. Let us consider the algebra for our running example of
network systems. Then for the term graph t � [∇•⊗ids ; id•⊗(net ;
μs ; ∇s) ; st ; !•] : • s → ε (see the figure to the right) there is
no AGN term G such that �G�x:s = t. In fact, among the natural
candidates: the term net[(μ y)st(y, y)](x) would be encoded as [net ;
∇• ; id•⊗(μs ; ∇s) ; st ; !•] with st lying “under” net (and not being
a “sibling” of net like in t); the term net(x)|(μ y)st(y, y) would be
encoded as [∇• ⊗ ids ; (∇• ; id• ⊗ (μs ; ∇s) ; st ; !•) ⊗ (net ; !•)]
with net and st siblings, but the restriction appearing “outside” net
(and not “inside” net, as in t); the term net[(μ y)0](x)|st(y) would
have y : s as a free node.

The above counterexample suggests that the algebra AGN can serve to charac-
terise exactly those term graphs with well-scoped references to nodes. These are
defined as follows.

Definition 17 (well-scoped term graphs). Let T = [〈v, d, r〉] be a term graph
of rank ((•, τ(σ)), ε) over the signature Σ•

B, with d = 〈N, E, lN , lE , src, trg〉. We
say that T is well-scoped if for all e ∈ E, for all n ∈ src(e), if there exists e′ ∈ E
such that n = trg(e′) and lE(e′) = μ, then src(e′) is on a •-path (i.e., a path
where all nodes are of sort •) from src(e)|1 to v(1).

Informally, this means that in a well-scoped term graph, every edge referring to
a locally restricted node n must lie inside the location where n is restricted.

On GS-Monoidal Theories for Graphs with Nesting 79

Proposition 2 (AGN terms and well-scoped term graphs). Given a set of
sorts S, a set of ranked labels B and a set of variables X , for each assignment σ =
x1 : s1, . . . , xn : sn there is a one-to-one correspondence between the equivalence
classes w.r.t. ≡A of AGN terms with free names in {x1, . . . , xn} and well-scoped
term graphs of rank ((•, τ(σ)), ε) over signature Σ•

B.

Proof (sketch). By structural induction it is possible to show that the result of
the encoding of Definition 16 is a gs-monoidal term corresponding to a well-
scoped term graph; furthermore, by structural induction on the gs-monoidal
normal form of well-scoped term graphs, it can be shown that every well-scoped
term graph can be obtained as the result of the encoding of a suitable AGN
term. By Theorem 3 the encoding is consistent with ≡A-equivalence classes, and
by Theorem 4 it is injective on term graphs. ��

Well-scoped term graphs can be considered just as an alternative, graphical rep-
resentation of NR-graphs, where the nesting is represented by a tree of locations,
i.e., the •-sorted nodes. Formally, this relationship is captured by the next defi-
nition and the following result.

Definition 18 (from term graphs to NR-graphs). Let T = [〈v, d, r〉] be a
term graph of rank ((•, τ(σ)), ε) over signature Σ•

B, with d=〈N, E, lN , lE, src, trg〉.
For a •-sorted node n ∈ N , let NRG(n) be the NR-graph defined as NRG(n)

= 〈LR, D, l, c, ρ〉, with

– LR = {trg(e) : s | e ∈ E ∧ src(e)|1 = n ∧ lE(e) = μs}
– D = {e ∈ E | src(e)|1 = n ∧ lE(e) ∈ B}
– l(e) = lE(e) for all e ∈ D
– c(e) = u when src(e) = •u, for all e ∈ D
– ρ(e) = NRG(trg(e)) for all e ∈ D.

Furthermore, let NR(T) = 〈FN, GR,NRG(v(1))〉, with

– FN = {v(i) : lN (v(i)) | 1 < i ≤ #τ(σ)}
– GR = {trg(e) : s | e ∈ E ∧ lE(e) = νs}.

Proposition 3 (correctness of the encoding). In the hypotheses of Defini-
tion 18, NR(T) is a NR-graph if and only if T is well-scoped. Furthermore, the
encoding does not depend on the choice of 〈v, d, r〉 in the equivalence class T (in
the sense that the same NR-graph is obtained, up to isomorphism).

Proof (sketch). By Definition 1 the main fact to prove is that in every NR-graph
inside NR(T) the edges are connected only to available external nodes, i.e.,
either to global nodes, or to those locally restricted in an enclosing edge. But
this is exactly the property ensured by being well-scoped. ��

An encoding in the opposite direction, from NR-graphs to well-scoped term
graphs, can be defined as well, but it requires more care. In fact, the naive
approach of “flattening” the nested structure of the NR-graph by rearranging
all its nodes and edges in a single structure might not work, because locally

80 R. Bruni et al.

restricted nodes or edges in different sub-graphs could have the same identity.
Therefore starting with an NR-graph G, one should first obtain an isomorphic
G′ with all node and edge identities distinct, and then one can proceed with the
flattening. We do not present here the technical details of this construction, but
we state its existence, and that it is inverse to NR.

Proposition 4 (from NR-graphs to term graphs). There exists an encod-
ing T G such that if σ is an assignment and G is an NR-graph with free nodes in
img(σ), then T G(G, σ) is a well-scoped term graph of rank ((•, τ(σ)), ε). Further-
more, for each well-scoped term graph T of rank ((•, τ(σ)), ε), T G(NR(T), σ) =
T , and for each NR-graph G with free nodes in img(σ), NR(T G(G, σ)) ∼= G.

Note that the equality is strict in T G(NR(T), σ) = T , because the NR-graph
NR(T) obtained from T has all nodes and edges distinct by construction,
whereas the equality is only up to isomorphism in NR(T G(G, σ)) ∼= G because
T G may involve the renaming of some nodes and edges.

6 Towards an Enhanced Modelling Framework

In the previous sections we presented the main technical results, which can be
summarised by the following diagram, already presented in the introduction.

AGN(S, B)/≡A� �

Sec. 4
��

�� �� NR-Graphs over (S, B)� �

Sec. 5
��

GS(Σ•
B) ��

[10]
�� Term Graphs over Σ•

B

Therefore we established a one-to-one correspondence between AGN terms up
to equivalence, and well-scoped term graphs and NR-graphs up to isomorphism.
In this section we first discuss how the relationship with term graphs can be
exploited to enrich the visual framework of NR-graphs with a notion of rewriting
and with existing analysis techniques. Next we discuss possible generalisations
of the proposed framework

6.1 On Rewriting NR-Graphs

In order to equip our models with behavioural specifications, a natural way is to
look for a suitable notion of graph transformation over NR-graphs. For example,
one could consider the following transformation rule, intended to model the fact
that two local sub-networks can be merged into a single one, which will include
the contents of both.

On GS-Monoidal Theories for Graphs with Nesting 81

Clearly, one should formalise this notion of rule, as well as its operational
meaning, i.e., when it can be applied to a given NR-graph and what the result
is. For example, one should clarify the meaning and the role of the variables Y
and Z, which are intended to denote the whole content of an edge.

The one-to-one correspondence with term graphs, for which a notion of rewrit-
ing is well-understood, can be helpful in this respect. For example, we can trans-
late the left- and the right-hand side of the rule into term graphs, and we can
introduce a third term graph in the middle and two morphisms in order to relate
the items that have to be preserved, obtaining the double-pushout rule

Quite naturally, through this translation the variables correspond to •-labelled
nodes, i.e., to locations. This encoding of NR-graph rules into term graph rules
can be exploited directly by lifting the definition of term graph rewriting to NR-
graphs, or can be used to check the consistency of an original notion of rewriting
over NR-graphs. In both cases, it provides a direct link to the rich theory of
concurrency and parallelism developed for the algebraic approaches to graph
transformation, as well as to the verification techniques developed for them [1]:
how far these results can be applied to NR-graphs and their transformations is
a subject of future work.

6.2 Edges with Inner Rank: From Term Graphs to GS-Graphs

The distinguishing feature of NR-graphs is the fact that edges are regarded as
containers of nested subgraphs. A natural generalisation of this idea would be to
equip each edge also with a sorted inner interface: while the ordinary “outer in-
terface” is induced by the nodes where the box is attached to, the inner interface
would introduce a dual view of local nodes provided by the edge to the nested
graph. Such an inner interface could be partly modelled using μ-restriction, but
with two main differences: 1) the sorting of the inner interface would be fixed
at the signature level, while μ-restricted nodes of any sort can always occur
inside a box; 2) the order of nodes provided by the inner interface would be

82 R. Bruni et al.

fixed, while μ-restrictions can commute thanks to axiom A4. For example, by
equipping each edge with an inner interface having the same rank of the outer
interface would provide a straight modelling of modules (each edge) with formal
parameters (the nodes provided by the inner interface) and actual parameters
(the nodes attached to the outer interface), the correspondence between actual
and formal parameters being implicit in the sorting of outer and inner interfaces.
Inner interfaces can also be handy for encoding polyadic input prefixes of process
calculi, where the input variables are just local place-holders for the values to
be received dynamically upon communication.

At the level of AGN syntax, this generalisation would correspond to introduce
an inner rank for each b ∈ B and to introduce terms like b[z.G](y), where z are
the nodes provided by the inner interface of b, whose sorting must match the
inner rank of b. At the level of axiomatisation, the nodes provided by the inner
interface should be α-convertible (z acts as a binder in b[z.G](y), with scope G)
and correspondingly extended versions of axioms A8 and A10 should be given
with suitable side-conditions (the notion of free nodes should also be updated).

At the level of the encoding in gs-monoidal theories, this would correspond
to move from signatures to hyper-signatures, where operators f ∈ Σu,w with
u, w ∈ S∗ are allowed. Interestingly enough, gs-monoidal theories are quite stable
and such an extension is seamless, as no additional axiom is required. This is not
the case for term graphs, that are tailored to ordinary signatures. This could be
annoying, because while we have seen that gs-monoidal theories over ordinary
signatures play for term graphs the role played by Lawvere theories for ordinary
terms (i.e., they neatly emphasise the essential algebraic structure underlying
the set-theoretical presentation of term graphs), the gs-monoidal syntax itself
can be hard to follow without the corresponding drawings, even for small terms
(see for example Definition 16).

Nevertheless, in the case of hyper-signatures we can resort to consider an
alternative model to term graphs, called gs-graphs [15], that is defined in terms
of concrete (multi-)sets of assignments. More precisely, two kinds of assignment
are allowed in gs-graphs: a proper assignment has the form x′

1 : s′1 . . . x′
k : s′k :=

f(x1 : s1, . . . , xh : sh) (for f ∈ Σs1···sh,s′
1···s′

k
), while an auxiliary assignment has

either the form x′ : s := x : s (aliasing) or !(x : s) (name disposal). Given a set of
assignments A, when a name appears in the left member of an assignment we
say that it is assigned, when it appears in the right member we say that it is
used and write x : s �A x′ : s′ if A contains an assignment where x : s is used
and x′ : s′ is assigned (meaning that, to some extent, x′ : s′ depends on x : s).
Like term graphs, also gs-graphs come equipped with top and bottom interfaces:
implicitly, the top interface is given by all names that are used but not assigned
in A (called leaves in [15]), while the bottom interface contains all names x′ : s′

assigned via an aliasing x′ :s := x :s in A (called roots). Each interface is ordered
according to a fixed total order ≤ on sorted names.

A gs-graph A is valid if it satisfies all of the following: (1) every name is
assigned at most once in A; (2) the transitive closure �+

A of �A is acyclic;
(3) every x′ : s such that x′ : s := x : s belongs to A is a maximal element of �+

A;

On GS-Monoidal Theories for Graphs with Nesting 83

(4) for each name n not assigned in A (exactly) one disposal !(n) is present in
A; (5) for each name n assigned in A no disposal !(n) can be present in A. Then
it can be shown that valid gs-graphs on the hyper-signature Σ (taken up to the
intuitive notion of isomorphism induced by any injective name substitution that
respects the total ordering ≤ on the names in the interfaces) are the arrows of
the freely generated gs-monoidal category GS(Σ).

In summary, we are confident that the results of the previous sections can be
generalised seamlessly by allowing edges with an inner rank in NR-graphs and
in the terms of the algebra, and by exploiting gs-graphs rather than term graphs
for the encoding.

7 Related Works

As recalled in the Introduction, graphs are widely used in Computer Science
for a visual, intuitive representation of systems and models of any kind. Several
notions of hierarchical graphs have been introduced along the years in various
areas, often as a useful structuring mechanism to cope with the modelling of
systems of realistic size. One of the earliest proposals are Harel’s higraphs [18],
used first for modelling database structures and next as a basis for statecharts.
Several other such models have been proposed since then, for modelling database
systems, object-oriented systems and hyper-media applications, among others
(see, e.g., the recap in Section 7 of [9]).

In the realm of Graph Transformation Systems, the use of hierarchical graphs
dates back to Pratt [21], who used them to represent data structures of pro-
gramming languages. Several other models have been proposed since them, till
the most recent and elaborated ones in [13,9]. The graphs of [13] share with our
NR-graphs the fact that subgraphs are encapsulated in (hyper-)edges, but they
do not allow arcs to cross edge boundaries. The approach of [9] is instead much
more general than ours, because they provide separated representations of a sys-
tem (given by a “flat” graph) and of its hierarchical structure (an acyclic graph),
relating them with a “connection graph”. Both these approaches will be sources
of inspiration for the definition of graph transformation over our NR-graphs, but
none of them provides an algebraic presentation.

More closely related to our proposal, and at the same time direct sources of
inspiration for us, are some graph formalisms developed for modelling process
calculi. They range from the several approaches based on flat graphs (see, e.g.
[16]), with which we share the modelling of name restriction ν, to Milner’s bi-
graphs [20]. Basically, a bigraph is given by the superposition of two graphs,
representing the locality and the connectivity structure of a system, respectively,
having the nodes in common. In our words, the first specifies the hierarchical
structure of the system, while the second the naming topology. So, we do be-
lieve that the two approaches have essentially the same expressiveness, even if
a precise comparison goes beyond the scope of this paper. It is worth noting,
nevertheless, that the two approaches are in a sense dual to each other: bigraphs
represent locations of a system as nodes (instead of hyper-edges) and names

84 R. Bruni et al.

as hyper-edges (instead of nodes): when designing our modelling framework we
preferred to introduce the notion of NR-graph rather than to stick to bigraphs,
because NR-graphs allow for a more intuitive representation of systems and have
a much simpler definition w.r.t. bigraphs. During the revision of the present pa-
per, we learned that an algebra for bigraphs has been proposed in [17]: we intend
to study the precise relationship between this algebra and ours, to understand if
the greater complexity of the former is balanced by a greater expressive power.
Moreover, the algebra given in [17] is “fine-grained” and closer to the gs-monoidal
algebra than to the AGN algebra, hence we think the result in this paper is an
important step for relating NR-graphs and bigraphs.

Concerning the axiomatisation, several (sound and complete) axiomatisations
of various families of graphs exist, and each of them provides a suitable linear syn-
tax for the corresponding graphs. Most of the axiomatisation explicitly address
node sharing, possibly following the seminal work on flownomial algebras [12].
It is not possible to mention here all the contributions to this field, but it seems
noteworthy that all these structures, including the one discussed in Section 3
and proposed in [10], can be seen as enrichments of symmetric monoidal cate-
gories, which thus reasonably provide the basis for the description of distributed
environments in terms of wire-and-box diagrams: see the survey [22] and the
meta-formalism in [4].

Finally, it is worth stressing that the AGN algebra and the corresponding
NR-graphs are very close to the algebra introduced in [7], whose semantics is
defined set-theoretically over a suitable domain of hierarchical graphs with in-
terfaces. Besides presenting a few technical differences (the hyper-edges of the
algebra of [7] also offer an inner interface, like the one discussed in Section 6.2;
edges without a nested graph are treated differently; there is only one type of
(localised) restriction, and the extrusion of restricted names is handled with
optional axioms) a formal encoding of that algebra into term graphs is not avail-
able yet, but should not be difficult with the formal background presented here.
Instead, that algebra has been used in [5,6,7] to encode several process calculi
featuring sophisticated notions of nesting and of restriction (including the π-
calculus [19], Sagas [8], and CaSPiS [3], among others).

8 Conclusion and Further Works

In this paper we presented a simple model of hierarchical graphs featuring nest-
ing of subgraphs within hyper-edges and two kinds of restrictions of nodes, which
are suited for representing in a direct way a wide class of systems and models.
In order to provide a linear, term-like syntax for such graphs, an axiomatisation
has been proposed, the main result being that such axiomatisation is sound and
complete. The result was proved by encoding such nested structures (both the
algebra and the graphs) into a simpler model (term graphs) where the nesting is
represented explicitly with a tree of locations, and by exploiting an existing ax-
iomatisation of term graphs as gs-monoidal theories. Finally possible extensions
of the presented framework are sketched, including the definition of a notion of

On GS-Monoidal Theories for Graphs with Nesting 85

rewriting over nested graphs, and the generalisation of the graphical model to
allow for edges with inner interfaces.

As topics of future research, besides those just mentioned we intend to clarify
the formal relationship between our NR-graphs and Milner’s bigraphs [20], and
of our algebra with the one recently proposed in [17]. In parallel to this, we
intend to test the adequacy of our modelling framework by encoding suitable al-
gebraic formalisms (typically process calculi), which would automatically obtain
a graphical representation, as well as visual modelling formalisms, for which we
could obtain a handy linear syntax.

References

1. Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-
state graph transformation systems. Information and Computation 206(7), 869–907
(2008)

2. Barendregt, H., van Eekelen, M., Glauert, J., Kennaway, J., Plasmeijer, M., Sleep,
M.: Term graph reduction. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C.
(eds.) PARLE 1987. LNCS, vol. 259, pp. 141–158. Springer, Heidelberg (1987)

3. Boreale, M., Bruni, R., Nicola, R.D., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

4. Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connections.
Theoretical Computer Science 286, 247–292 (2002)

5. Bruni, R., Corradini, A., Montanari, U.: Modeling a service and session calculus
with hierarchical graph transformation (2010) (submitted)

6. Bruni, R., Gadducci, F., Lluch Lafuente, A.: An algebra of hierarchical graphs and
its application to structural encoding. Scientific Annals in Computer Science (to
appear, 2010)

7. Bruni, R., Gadducci, F., Lluch Lafuente, A.: A graph syntax for processes and
services. In: Laneve, C., Su, J. (eds.) Web Services and Formal Methods. LNCS,
vol. 6194, pp. 46–60. Springer, Heidelberg (2010)

8. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: Palsberg, J., Abadi, M. (eds.) POPL 2005,
pp. 209–220. ACM, New York (2005)

9. Busatto, G., Kreowski, H.J., Kuske, S.: Abstract hierarchical graph transformation.
Mathematical Structures in Computer Science 15(4), 773–819 (2005)

10. Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures 7(4), 299–331 (1999)

11. Corradini, A., Montanari, U., Rossi, F.: An abstract machine for concurrent mod-
ular systems: CHARM. Theoretical Computer Science 122(1&2), 165–200 (1994)

12. Căzănescu, V.E., Ştefănescu, G.: A general result on abstract flowchart schemes
with applications to the study of accessibility, reduction and minimization. Theo-
retical Computer Science 99(1), 1–63 (1992)

13. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. Journal
on Computer and System Sciences 64(2), 249–283 (2002)

14. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hy-
peredge replacement as a model for service oriented computing. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 22–43. Springer, Heidelberg (2006)

86 R. Bruni et al.

15. Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Infor-
mation and Computation 156(1-2), 173–235 (2000)

16. Gadducci, F.: Graph rewriting for the pi-calculus. Mathematical Structures in
Computer Science 17(3), 407–437 (2007)

17. Grohmann, D., Miculan, M.: Graph algebras for bigraphs. In: Ermel, C., de Lara,
J., Heckel, R. (eds.) GT-VMT 2010. Electronic Communications of the EASST,
vol. 29 (2010)

18. Harel, D.: On visual formalisms. Communication of the ACM 31(5), 514–530 (1988)
19. Milner, R.: Communicating and Mobile Systems. Cambridge University Press,

Cambridge (1992)
20. Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computa-

tion 204(1), 60–122 (2006)
21. Pratt, T.W.: Definition of programming language semantics using grammars for

hierarchical graphs. In: Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars
1978. LNCS, vol. 73, pp. 389–400. Springer, Heidelberg (1979)

22. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke,
B. (ed.) New Structures for Physics. Lecture Notes in Physics. Springer, Heidelberg
(to appear, 2010)

	On GS-Monoidal Theories for Graphs with Nesting
	Introduction
	An Algebra for Graphs with Nesting and Restrictions
	Graphs with Nesting and Restriction
	The Algebra for Graphs with Nesting
	A Normalised Form for Terms of AGN

	Term Graphs and GS-Monoidal Theories
	GS-Monoidal Theories

	From AGN Terms to Term Graphs
	From Term Graphs to Graphs with Nesting
	Towards an Enhanced Modelling Framework
	On Rewriting NR-Graphs
	Edges with Inner Rank: From Term Graphs to GS-Graphs

	Related Works
	Conclusion and Further Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

