Matching Class Diagrams: With Estimated Costs Towards
the Exact Solution?

Sabrina Uhrig
Bayreuth University
Applied Computer Science |
95440 Bayreuth, Germany

sabrina.uhrig@uni-bayreuth.de

ABSTRACT

It is widely known that the general matching problem on
graphs is a non-polynomial optimization problem. Thus all
differencing algorithms we know of use heuristics to identify
corresponding elements (e.g.[2],[6]) apart from those that
rely on unique identifiers (e.g.[5],[3]). We wonder if an ex-
act algorithm can be designed which computes a minimal
cost matching between the elements of the class diagrams
and which, although it shows a non-polynomial worst case
behaviour, delivers its solution much faster in most cases.
In this position paper we describe our ongoing work, the
idea of an algorithm which works with estimated transfor-
mation costs in order to reduce the computation costs. The
algorithm has not been implemented yet; it has only been
manually tested on a few examples.
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D.2 [Software]: Software Engineering; D.2.7 [Distribution,
Maintenance, and Enhancement]: Software Engineer-
ingVersion Control

General Terms
Algorithms

Keywords
Differencing, UML Diagram

1. INTRODUCTION

Differences between two versions of a class diagram are
needed to compare and merge class diagrams in team devel-
opment processes. As there is no generally agreed definition
upon the term difference it is avoided in this paper. What we
would like to compute in fact is the cheapest directed delta,
which is a set of cost-weighted edit operations that transform
one class diagram into another. Having found such a delta,
we can derive a distance and the corresponding elements.
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As it is not easy to identify corresponding elements of
different versions in such a way that a minimal delta is com-
puted, several diff and merge tools rely on unique identifiers:
When an element in a diagram is created, it is assigned
a new unique identifier. When the diagram is copied, the
identifiers of its elements are retained. To a great extent,
the calculation of differences is for free when unique identi-
fiers are present. Thus unique identifiers simplify algorithms
and make them more efficient. However, unique identifiers
make differencing and merging dependent on the history
of changes. In rare cases, it might even happen that two
versions are considered to have an empty intersection even
though they are isomorphic. This situation occurs when
both versions have been created with the same contents in-
dependently by different users. Thus we decided that our
algorithm shall not rely on unique identifiers [1].

2. THE ALGORITHM

We present the idea of an exact algorithm for the compu-
tation of a cost minimal directed delta between two class dia-
grams. The algorithm is currently limited to the underlying
simplified data model of class diagrams with a small set of
feasible edit operations (move operations are not included).
The focus is on finding the corresponding classes. In order
to reduce the computation costs, the algorithm uses an esti-
mated cost function to handle the dependencies between the
classes which are connected by edges. It is important that
the estimated costs are a lower bound for the real costs. The
algorithm finds an optimal matching according to the esti-
mated transformation costs in polynomial time and we are
interested in the circumstances under which the optimality
condition holds for the real costs, too.

The section is structured as follows: To specify the opti-
mization problem, we describe the data model the algorithm
operates on in 2.1, the edit operations which are feasible in
2.2 and their weighting by the cost function in 2.3. To re-
duce the computation costs we use estimated cost values as
described in 2.4. A network graph is constructed in 2.5 that
is needed to formulate and solve the optimization problem
which is defined in 2.6. In section 2.7 we formulate a suffi-
cient optimality condition. After summarizing the steps of
the algorithm in 2.8 we show a simple example in section
2.9.

2.1 The underlying data model

The algorithm has been designed to operate on the sim-
plified model of class diagrams shown in figure 1. A class
diagram consists of classes, which can be connected pairwise
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Figure 1: The underlying data model (modeled in
RSA).

by association or inheritance edges. Furthermore a class can
have attributes, described by name and type, and operations
consisting of a name, a return type and optional ordered pa-
rameters described by name and type. Association edges
have a name and cardinalities for both anchor points.

2.2 The edit operations

The set of feasible edit operations on this model is re-
stricted to the basic operations create, delete and update
on the different elements. The type of an element cannot
be changed, e.g. an attribute cannot become an operation.
Move operations are not supported, so if a class is matched
onto another class all attributes of the first class have to be
matched onto the attributes of the second class. The same
applies for the operations, association and inheritance edges.
For instance the feasible edit operations on association edges
are: updating a cardinality value, changing the association
name, deletion or creation of the edge. Due to the fact that
inheritance edges have no changeable qualities, they only
can be created or deleted. Moving an inheritance or asso-
ciation edge is no feasible edit operation in this model. A
complete list of the feasible edit operations can be found in
table 1.

2.3 The cost function

Let A and B be class diagrams according to the model

described in section 2.1 and a; € A,i = 0,...n and b;
€ B,j = 0,...m their classes. The cost function c(a;, b;)
denotes the minimal editing costs of transforming the class
a; into b; with respect to the feasible edit operations which
have been defined in section 2.2. Deletion and creation
are inverse operations and therefore assigned with equal
costs, i.e. c(ai,€) = c(e,a1). The editing distance between
two identical elements being zero, the cost function fulfills
c(as,a;) = 0.
Let t,; denote the subtree rooted at a; in the composition
structure of the data model of Diagram A as shown in fig-
ure 1. In order to compute c(a;,b;), c(ta;,ts;) has to be
determined. So the transformation of class a; into class b;
causes:

e the costs of name change plus

e the minimal costs for transforming the attributes of a;
into the attributes of b; plus

e the minimal costs for transforming the operations of
a; into the operations of b; plus

e the minimal costs for transforming the association re-
lationship edges of a; into the association relationship
edges of b; plus

e the minimal costs for transforming the inheritance
edges of a; into the inheritance edges of b;.

Thus we need also cost functions for the operations on the
other types according to the composition structure. For in-
stance the transformation of an operation a; into an opera-
tion of b; causes:

e the costs of method name change plus
e the costs for updating the return type plus
e the costs for updating the ordered parameters.

Due to the fact that the method parameters are ordered, no
further optimization problem has to be solved. The costs
assigned to all feasible edit operations can be taken from
table 1. Here we explain only the decisions that led to these
cost values.

Every change operation, which operates on one element
only, is assigned to one cost unit. Deleting an element is
more expensive than changing all its qualities and thus is
assigned with the cost of changing all its qualities +1. It
doesn’t matter how similar names are. If they are different
the editing costs for transforming one name into another are
1. The costs of deleting an inheritance edge is an exception:
the edge has no additional qualities but it seems to be more
important and thus it costs 2 to delete or create it.

c(A, B) is then defined as the minimal editing costs to
transform the subtree rooted at the root element of Diagram
A into the subtree rooted at the root element of Diagram B
(The transformation costs of the document roots are zero).
Therefore the editing distance between two diagrams is sym-
metric and the cost function too, i.e. ¢(A, B) = ¢(B, A).
The editing distance between two identical diagrams being
zero, the cost function fulfills ¢(A, A) = 0.

2.4 Splitting the cost function in a sum of
certain and estimated costs

If we consider matching one class with another, we can
exactly compute the transformation costs for the name, the
attributes and the operations, because of the restriction that
these elements cannot be moved and have to be matched
to the attributes and operations contained in the matched
class. So we can compute the transformation costs for each
class pair (O(n?)) independently of how the other classes are
matched. This is our exact part of the cost function ccertain -

But the costs for the transformation of inheritance and
association relationship edges matching two classes cannot
be determined exactly without knowing how the classes at
the other side have been matched. This is the reason why
this problem has non-polynomial complexity. There are n!
combinations for matching n to n classes, for which we have
to determine the costs. To avoid this effort, we use esti-
mated costs as second part of our cost function Cestimated
which states the costs we have at least.

To deduce the estimated costs for the transformation of the



Table 1: Feasible edit operations and their costs (c.).

edit operation | operates on elements of type | costs

name update class 1
attribute

operation

parameter of an operation
association edge

attribute

parameter of an operation
return type of an operation
cardinality of an association

type update

value update

create/delete class 1 + c. of name update + c. of deleting/creating all attributes,
operations, association edges and inheritance edges
operation 1 + c. of name update + c. of return type update + c. of delet-
ing/creating all parameters
attribute 1 + c. of name update + c. of type update = 3
parameter 1 + c. of name update + c. of type update = 3
inheritance edge 2

association edge

1 + c. of name update + 2* (c. of cardinality update) = 4

inheritance relationship edges when matching two classes,
we simply count the number of incoming and outgoing edges
for both classes and compute the number of edges that have
to be deleted/created:

Inheritance edges: Class a has two incoming inheritance
edges and class b has one incoming and one outgoing inheri-
tance edge. So at least one incoming edge of class a and the
outgoing edge of class b have to be deleted (costs: 4). We
do not know whether the incoming edge of a and one of the
incoming edges of b can be matched until the classes on the
other side of the edges have been matched, but certainly the
real costs in the final matching are > 4.

Deducing the estimated costs for the transformation of the
association relationships is more complex:

Association edges: If class a has n association edges and
class b m association edges we have to solve the matching
problem to find the minimal cost matching for transforming
p=min(m,n) association edges into g=mazx(m,n) associa-
tion edges while deleting the d=|n — m| unmatched edges.
This can be solved in polynomial time.

Due to the fact that association and inheritance edges con-
nect two classes, we cannot attribute the full costs to the
class we inspect as this would result in counting the costs
twice. Thus these costs have to be halved. Due to the sort
of estimation we use we can be sure that the sum of the cer-
tain costs and the estimated costs is a lower bound to the
real costs of the matching:

THEOREM 1.

Creal (ai7 bj) 2 Ccertain(ai7 bg) + Cestimated(ai7 b])

Ya; € A, bj eB
We define ¢ := Ceertain (@i, b5) + Cestimated (@i, b;).

2.5 Construction of the network graph

First, a complete bipartite graph is built, containing nodes
for all classes a;, i=0,...n of Diagram A on one side and all
classes b;, j=0,...m of Diagram B on the other side; w.l.o.g.
Diagram A has as many classes as Diagram B or even more
classes (n > m). The edges are directed, i.e. arrows from
the elements of Diagram A to Diagram B. In order to allow

for the delete operations a node € with directed edges from
all classes of Diagram A to € is added. A source node r has
to be added and connected with directed edges to all classes
of A and a sink node s to which all classes of B and ¢ are
connected with directed edges. At last add directed edges
from € to every class of B. In sum our network graph G
=(V, E) has a set of nodes V ={r,s,¢, a1,...an, b1,...b,m} and
the above described set of edges E: (as,b;) Vi,7, (r,a:) Vi,
(bj,8) V7, (ai,€) Vi,(e,b;) V5 and the edge (¢,s).
Each directed edge is assigned with a minimum capacity (A),
a maximum capacity(x) and costs (¢). These are (0,1,0)
for all directed edges which start at r. The directed edge
€ — s is assigned with (0,n — m,0). The edges a; — b; are
assigned with (0,1,c(as, b5)), c(as, b;j) denotes the estimated
cost function value as stated in 2.3. The edges a;, — € have
the labels (0,1,c(as,€)), the edges b; — s are labeled with
(0,1,0) and the edges € — b; are assigned with (0,1,c(e, by)).
Figure 5 shows the flow graph for the example in section 2.9.
If we send n units through r into the network graph they
have to be transported to s according to the given mini-
mal and maximal capacities on each edge. So every a; has
to be matched onto one b; or onto €, because one unit is
transported into a;. Also every b; is matched exactly once,
because only one unit can be transported from b; to s. If
this unit comes from an a; that means class a; is matched
with class b;. Else this unit comes from the € node which
means that no class of Diagram A is matched with b;, so b;
has to be created.

2.6 The optimization problem

To get a cost minimal matching we have to transport n
units from r to s with minimal costs. This can be formulated
as optimization problem as follows:

OPTIMIZATION PROBLEM 1.

minimize g CijPij

(i,j)€EE
n ifi=r
s.t. Z (]bij — Z qb;m = —-n if i=s (1)
i—j k—i 0 VieV\{rs}



0 < ¢ij < ki, (,§) EE

(2)

¢i; denotes the number of units which are transported on the
arrow ¢ — j and c¢;; its transport costs per unit. Condition
(1) makes sure that Kirchhoff’s Current Law is true: the
sum of units flowing into a node is equal to the sum of units
flowing away from that node for every node in the network
except for the source and the sink node. Condition (2) makes
sure that the given maximal capacities of the edges are not
exceeded. More details on such an optimization problem can
be found in [4].

The Busacker-Gowen Algorithm, which can solve this prob-
lem in polynomial time, is also described in [4]. It starts with
a feasible flow of value 0 on G and increases the flow value
in n steps, one unit per step. In every step a shortest aug-
menting path has to be determined on the flow network G
that consists of the directed edges (i,j) of G with ¢;;<rij
and the back edges (k,l) with ¢y >0.

2.7 The optimality condition

If we transport a flow of an value of n from r to s with
minimal costs on the ¢;,-weighted edges, we get an optimal
solution for the matching problem with costs ¢f;,.

THEOREM 2.

ey < (@)

v{i|i is a matching}

Due to the fact that all the classes have been matched, we
can now recompute the costs cestimateda fOr each matched
pair of classes in order to get the exact costs creqi. And
therefore we can formulate a sufficient optimality condition:

OPTIMALITY CONDITION 1.
If Creal = Cikb
then ¢y is optimal.

2.8 The steps

In this section we summarize the steps of the algorithm
outlined so far.

1. Construction of the network graph G containing the
bipartite graph induced by the classes of the two dia-
grams as described in section 2.5

2. Computation of cip(as,b;), cin(as, €) and cp(e,b;) V
classes a; € A and b; € B with estimated costs for in-
heritance relationship edges and association relation-
ship edges as described in sections 2.3 and 2.4

3. Solution of the optimization problem described in sec-
tion 2.6: a flow of n units from r to s with minimal
costs ¢}, on the ¢jp-weighted edges of G has to be found.

4. Determination of the exact costs of the found matches

Creal

5. If ¢}y = Crea: @ minimal exact matching has been found.

2.9 An example

In this section we have a look at a simple example: We
compute the corresponding classes of Diagram A and Dia-
gram B as shown in figures 2 and 3. The internally used
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@ agentho : Integer -

Client

ReservationContract
@ clientha : Integer o ]

§ printData ) : Void =
1
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Vehicle

@ color: String
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@ type : String =
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Date

@ day:Integer
@ month : Integer =

Figure 2: Class diagram A (modeled in Fujaba).
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Figure 3: Class diagram B (modeled in Fujaba).

identifiers in this example can be taken from table 4. For a
class a; € Diagram A, there are possibilities of matches with
class b;,5 = 1,...,5 and the deletion of a;.

The values of the cost function for this example can easily be
computed. See table 2 for the possible matches of class aa.
Let us explain the entries in the row (a4,b1): If a4 has to be
transformed into b1, the class name has to be changed (costs:
1), the attribute clientNo has to be deleted (costs: 3), the
operation printData() has to be deleted (costs: 3). a4 has
an outgoing inheritance relationship edge, b1 has two incom-
ing inheritance relationship edges. Therefore at least three
inheritance relationship edges have to be deleted/created
(costs: 3%2:2=3). a4 has an association relationship edge,
b1 has no association relationship edge. Thus the associa-
tion edge has to be deleted/created (costs:4:2=2). All in all:
Creal(Ga,b1)> 12, c;p=12. After computation of the costs
cw(ai,bj) V 1j, cw(ai,€), Vi and cwp(e,bj), V j (see table
2) and the construction of the network graph G (see figure
5) the Busacker-Gowen Algorithm finds the minimal cost
matching {(al,b1)7 (a27b2)7 (a37b3)7 (0’47b4)7 ((15,b5), (aﬁaﬁ)}
with summary costs of ¢j,=42. As cjp* = Crear we have
found an optimal exact matching.

If class a¢ in Diagram A had a further attribute year of
type Integer the Busacker-Gowen Algorithm would deliver
the minimal cost matching {(a1,b1), (az2,€), (as,b3), (as,bs),
(as,b5), (ae,b2)} with summary costs of ¢j=44. As cp* <
Creal = D1 we have not found an optimal exact matching in
this case.



Figure 4: Class identifiers in example 2.9.

identifier | diagram: class name
aj Diagram A: Person
ag Diagram A: Agent
as Diagram A: ReservationContract
aq Diagram A: Client
as Diagram A: Vehicle
ag Diagram A: Date

b1 Diagram B: Person
ba Diagram B: agent

bs Diagram B: Contract
by Diagram B: Client
bs Diagram B: Vehicle

0,1,c(ai,bj) for all ai — bj
0,1,c(ai,e) for all ai — €

Aij,Kij,cij

Figure 5: The extended bipartite graph.

3. FUTURE RESEARCH

Once the algorithm has been implemented, we can ap-
ply it to test sets of diagrams to evaluate the percentage of
cases where an exact solution can be found. In order to in-
crease this number the defined cost function or its estimation
may have to be modified. Furthermore the underlying data
model can be extended and refined. Finally, the result of the
exact algorithm may be compared with that of heuristic al-
gorithms. The question remains, however, whether the user
considers the exact matching with respect to a given cost
function in fact as more accurate as the matching computed
using heuristics.
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