A Formal Approach to Three-Way Merging of EMF Models

Bernhard Westfechtel
Applied Computer Science |, University of Bayreuth, D-95440 Bayreuth

bernhard.westfechtel@uni-bayreuth.de

ABSTRACT

Inadequate version control for models significantly impedes
the application of model-driven software development. In
particular, sophisticated support for merging model versions
is urgently needed. In this paper, we present a formal ap-
proach to three-way merging of models in the EMF frame-
work which may be applied to instances of arbitrary Ecore
models. We specify context-free and context-sensitive rules
for model merging which both detect and resolve merge con-
flicts. Furthermore, we present a merge algorithm which
produces a valid model provided it is supplied with valid
input models.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—software con-

figuration management

General Terms
Algorithms, Theory

Keywords
EMF models, merging

1. INTRODUCTION

Model-driven software development strives for reducing
the effort of developing software by replacing conventional
programming with the construction of high-level, executable
models. Currently, model-driven software development con-
stitutes a hot research topic which is addressed by more and
more dedicated conferences and workshops. Furthermore,
model-driven software development is starting to make its
way into industrial practice.

However, model-driven software development is not a ma-
ture technology yet, and many open problems still call for
adequate solutions. In particular, inadequate version control
has been identified as a major obstacle to practical applica-
tions. Traditional version control operates on text files. It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWMCP 10, July 1, 2010 Malaga, Spain

Copyright 2010 ACM 978-1-60558-960-2 ...$10.00.

31

has been recognized early that text-based tools do not pro-
duce satisfactory results for version control of models. In
particular, this applies to comparing and merging versions,
the latter of which is addressed in this paper.

The shortcoming of text-based tools has motivated the
development of model-based tools, i.e., tools which take the
structure of the model versions into account. Quite a num-
ber of approaches to model merging have been proposed.
Unfortunately, the reasoning capabilities realized in these
approaches are still limited, and the model merge may pro-
duce an inconsistent result [11, 3].

In this paper, we describe an approach to model merging
in the Eclipse Modeling Framework (EMF) which (1) may
be applied to all models instantiated from Ecore models, (2)
performs a three-way merge of two alternative versions with
respect to a common base version, (3) is based on formally
defined merge rules, (4) is able to handle moves of model
elements in addition to insertions, deletions, and updates,
(5) produces a valid (syntactically correct) model as result,
and (6) detects and resolves both context-free and context-
sensitive conflicts (contradictory changes to the same ele-
ment and to different elements, respectively).

The approach serves as a formal specification based on
which a tool for model merging may be realized. We con-
sider such a formal specification essential because it pre-
cisely describes the problem to be solved on a high level of
abstraction. To obtain a declarative and concise specifica-
tion, rules for merging and conflict detection are formalized
in logic. In addition, some high-level graph algorithms are
given where the purely declarative logic notation is not ex-
pressive enough.

2. PRELIMINARIES

Three-way merging is used to combine two alternative ver-
sions derived from a common base version into a single
merged version. Non-conflicting changes relative to the base
version are included automatically into the merged version.
Conflicts occur in the case of contradictory changes and are
resolved either automatically or interactively.

Figure 1 illustrates alternative approaches to three-way
merging. In the case of state-based merging [19], the states
of the alternative versions a; and a2 and the base version
b are taken as inputs. The versions are compared pair-wise
along three ways (illustrated by the edges of the triangle).
A merged version m is constructed which incorporates ele-
ments from a; and a2 (illustrated by the arrows ending at
m) with the intent to reconcile the changes having been ap-
plied concurrently to b. In the case of differences between

b A=A &) A= Ab, &)
m An = A(D, an)
a) State-based merging | b) Operation-based merging

Figure 1: Three-way merging

a1 and a2, the base version is inspected to figure out which
changes have been performed on each branch. If a change
has been performed only on one branch, it is applied auto-
matically. If (contradictory) changes have been performed
on both branches, a conflict is reported.

Alternatively, operation-based merging [16] takes the base
version b and the deltas A1 and Az (sequences of change
operations) from the base to the alternative versions as in-
puts. The deltas are combined in an order-preserving way
to produce a merged delta A,, which is used to create m
from b. The merge process has to eliminate duplicate oper-
ations and has to detect conflicts. Here, a conflict between
two operations op1 € A; and op2 € Az occurs in some state
s reached during the merge if either one of the operations
invalidates the other one (Condition 1) or both operations
are applicable in sequence, but they do not commute (Con-
dition 2):

op2(op1(s)) = LV opi(op2(s)) = L (1)

op2(op1(s)) # L Aopi(opz2(s)) # L A
op2(op1(s)) # op1(opz(s)) (2)

State- and operation-based merging are alternative ways
to solve the same problem, namely to reconcile concurrent
changes having been applied to a common base version. In
state-based merging, the deltas are reconstructed implicitly
by comparing the states. In our approach, we have decided
to apply state-based merging for two reasons:

First, operation-based merging suffers from a missing com-
parison. It operates on two rather than on three deltas. As
a consequence, duplicate operations may go unnoticed. E.g.,
when the “same” object is created on both branches, it may
be assigned different object identifiers. Thus, it is not rec-
ognized that operations actually apply to the “same” object.

Second, operation-based merging also suffers from miss-
ing state information. When constructing the merged delta
step by step, we have to decide for the next operation to
be processed whether it stands in conflict with some future
operation from the other delta. For this decision, only the
current state reached during the merge and the deltas are
available. However, the state in which the future operation
will be executed may be relevant, as well. Thus, some con-
flicts may go unnoticed.

3. MODELS IN EMF

In EMF, each model is an instance of an Ecore model
which defines the types to be instantiated. Ecore models are
in turn instances of the Ecore metamodel. Figure 3 shows
a cutout of the Ecore metamodel as far as it is relevant for
the purpose of this paper. Essentially, we have stripped all
parts from the full metamodel which do not affect stored

32

ENamedElement
name : String

EStructuralFeature +eType ! EClassifier
many : Boolean = false instanceClassName : String
ordered : Boolean = true

f; (é +eStructuraIFeature\1 ﬁ

EAttribute EReference EClass EDatatype

unique : Boolean = true abstract : Boolean
interface : Boolean

* -eSuerTypes

Figure 2: Simplified Ecore metamodel

containment : Boolean

+eOpposite

model instances (packages, operations, and features which
are not stored persistently).

An Ecore model consists of classes which are organized
into an inheritance hierarchy. Each class owns a set of struc-
tural features. With respect to multiplicities, we distinguish
only between single- and multi-valued features (attribute
many). The Ecore metamodel allows to specify integer values
for lower and upper bounds, but the bounds are not checked
at runtime. The attribute ordered is relevant only for multi-
valued features. Features are classified into attributes and
references. Attributes are typed with data types, i.e., Java
types such as e.g. boolean, int, or String whose values are con-
sidered atomic in EMF. The (meta) attribute unique is used
to classify multi-valued attributes into sets and bags. Refer-
ences are typed with EMF classes. Multi-valued references
are always unique. In EMF, references are uni-directional,
but two uni-directional references may be declared as op-
posite to represent bi-directional associations. Containment
references are used to build a tree, which is augmented with
cross references.

A model instantiated from an Ecore model is composed of
objects instantiated from the respective classes. Each object
is composed of (instances of) the features defined for its class
in the Ecore model. Each feature may be viewed as a slot
for one or more values. Please note that in the current EMF
implementation multi-valued features are always represented
as lists even if the order is immaterial. Values of attributes
and references are called data values and links, respectively.
A model is valid if (1) the containment links form a tree, (2)
the target of each link exists (referential integrity), (3) bi-
directional links are inverse to each other, and (4) the type
and multiplicity constraints of the underlying Ecore model
are satisfied.

4. MODEL DIFFERENCES

Our merge algorithm assumes that its input versions have
been compared with the help of some difference algorithm
such as e.g. EMF Compare [7]. In the following, we define
the assumptions we make with respect to the outcome of
the difference calculation. Any difference algorithm may be
used which satisfies these assumptions.

Throughout the rest of this paper, we will always assume
that all compared models are of the same type, i.e., they are
instances of the same Ecore model.

4.1 State-Based Differences

A state-based difference identifies the common and the
differing elements of two versions. Common elements are
identified by a matching. Let v1 and vy denote two model
versions and O; and Oz denote their respective sets of ob-
jects. An (object) matching is a set OM of undirected bi-
nary edges between O; and O2. We will write 01 > 02
for {01,02} € OM. We require an object matching to be

unique, i.e., each object may be matched at most once’:

01 <> 021 N\ 01 <> 022 = 021 = 022

3)
(4)

Furthermore, the object matching has to be type consis-
tent, i.e., only objects of the same type may be matched.

Let class(o) denote the class from which o was instantiated.
Using this function, type consistency is defined as follows:

011 ¢ 02 N\ 012 <> 02 = 011 = 012

01 4> 02 = class(01) = class(02)

()

Finally, we require matching roots. Let r1 and r2 denote
the roots of v1 and wva, respectively. Then the following
condition must hold:

1 4> T2

(6)

For three-way merging, we need three pair-wise matchings
on the input versions. Let us consider the union of these
matchings. For this union, we require transitivity:

01 $> 02 \ 02 <> 03 = 01 <> 03

(7)

Concerning data value matchings, we assume that only
equal data values may be matched. Thus, explicitly stored
matchings are not required for single-valued and unordered
multi-valued attributes. For ordered multi-valued attributes,
we assume that the difference algorithm has calculated a
matching which is not necessarily order-preserving.

Virtually all known difference algorithms satisfy the uni-
queness Conditions 3—4. Condition 6 is not vital and could
be removed easily. Transitivity (7) and type consistency
(5) are satisfied if the difference algorithm is based on im-
mutable unique identifiers and the types of objects are im-
mutable, as well. However, they are not necessarily satis-
fied by algorithms based on similarity values [13]. Viola-
tions of Condition 7 may be removed by adding transitive
object matchings, provided that the object matchings re-
main unique. Releasing the requirement for type consistency
would require extensions to our merge rules.

4.2 Change-Based Differences

From a matching, a delta — a sequence of change opera-
tions — could be derived which transforms one of the com-
pared versions into the other one. Although our state-based
merge algorithm requires only a matching, it is important
to note which kinds of change operations it may handle (Ta-
ble 1). In addition to assignment, addition, and deletion,
our algorithm covers move operations because it does not
rely on any assumptions regarding the relative positions of
matched objects or values.

In the conditions given below, variables are universally
quantified.

33

Operation
assign(t, f, v)

Category
Single-valued

Description
Assign value v to feature

feature f of target ¢
Multi-valued remove(t, f, v) | Remove value v from
feature feature f of target ¢
Unordered add(¢, f, v) Add value v to feature f
multi-valued of target ¢

feature

Ordered multi- | add(¢, f, v, p) Add value v to feature f

valued feature of target ¢t at position p

Unordered move(t, ¢, 0) Move object o to
containment reference c of target ¢
reference

Ordered move(t, ¢, 0o, p) | Move object o to
containment reference c of target t at
reference position p

Table 1: Change operations

5. CONTEXT-FREE MERGING

We will develop the merge algorithm in multiple steps. As
a first step, the current section presents a set of context-free
merge rules. These rules determine the set of objects which
should be included into the merged versions and consider
each feature of each object without taking the context into
account. The interaction among the context-free rules will
be discussed in the next section.

5.1 Object Classification

So far, we have assumed that the object sets of the input
versions are disjoint. For the following definitions, it is more
convenient to deal with overlapping object sets. Based on
the matchings between the input versions, the object identi-
fiers are re-assigned in such a way that matching objects are
assigned the same object identifier. This re-assignment can
be performed in a consistent way only if the matchings are
unique and transitive. If the matchings are based on unique
object identifiers, these identifiers may be used directly, and
the re-assignment step may be skipped.

Let Oy, O1, and O2 be the object sets of the base versions
and both alternative versions. The set of objects O,, of the
merged version should include those objects from the base
version which have not been deleted from either of the alter-
native versions, plus the objects which have been inserted
on either branch (object set rule):

Oins = (01 \ Op) U (02 \ Os)
Oget = (0 \ O1) U (Oy \ O2)
Om = (Op \ Oger) U Oins

(8)
(9)
(10)

For the following rules, it is necessary to partition the ob-
ject set of the merged versions into three disjoint subsets.
An object in O,,3 is contained in all input versions and will
be processed by a three-way merge (11). An object in om2 is
contained in both a; and a2, but not in b (duplicate inser-
tion, 12). Even though the overall merge algorithm operates
along three ways, only a two-way merge may be applied to
objects in Om2 (i.e., any difference has to be handled as a
conflict). Finally, an object in Om,1 has been inserted into
exactly one of the alternative versions (13). Therefore, it
has to be copied into m.

Om3z =0, N 01N Oz (11)
Om2 = (01N 02) \ Oy (12)
Om1 = Oins \ (01 N 02) (13)

5.2 Feature Merging

In this subsection, we give context-free two-way and three-
way rules for feature merging (and omit the straightforward
copy rules for objects from O,,1). These rules do not distin-
guish between attributes and references. In the following,
f denotes a feature, the indices b, 1, 2, and m indicate the
base version, the alternative versions, and the merged ver-
sion, respectively. v stands for an arbitrary defined value
(either a link or a data value). If different variables are used
for values, the values are assumed to be different. The value
1 indicates a conflict which should be resolved by the user.

The following rules determine the values of single-valued
features®. If the values are equal in a; and as, the value is
copied to m (14). If the values are different, but one of them
is equal to the base value, the differing value (the change) is
selected (15). (16) and (17) handle three-way and two-way
conflicts (three and two different values, respectively).

fi(o) = f2(0) =v = fm(o) =v (14)
fo(0) =v A fi(o) =v A f2(0) =v2 = fm(0) =v2 (15)
fo(0) =vp A fr(0) = v1 A fa0) =v2 = fm(0) = L (16)
0¢& Op A f1(0) =v1 A fa(0) =v2 = fm(o) =L am)

Although multi-valued features are always represented as
lists in the current EMF implementation, we make use of the
ordered attribute in Ecore models to distinguish between or-
dered and unordered features. Thus, for unordered features
we avoid pseudo merge conflicts on the order of elements.

In the case of unordered sets, shared elements are included
into m (18). The same applies to elements inserted on one
branch (19). Elements deleted on one branch are excluded
(20). Three-way merging does not produce any conflicts.
Differences between the sets cause conflicts in two-way merg-
ing (21)3.

v € fi(0) Av € fa(0) = v € fm(0) (18)
v € fi(o) Av ¢ fa(o) Av g fio(o) = v € fm(0) (19)
v € fi(o) Av ¢ fa(o) Av € fio(o) = v & fm(o) (20)
v e fifo)Avé fa(o) No¢ Op = (vE fm(o) =L (21)

Unordered bags are represented as functions which map
values into multiplicities. Thus, for some object o a bag-
valued feature f is a function f(o,.) : V — N, where N
stands for the natural numbers and f(o,v) denotes the mul-
tiplicity of v. Insertions and deletions increase and decrease
the values of f, respectively. In the case of two-way merg-
ing, equal multiplicities are copied to m (22), and a con-
flict is raised for differing multiplicities (23). For three-way
merging, let df;(o,v) = fi(0,v) — fu(o,v)(i € {1,2}) denote
the differences in multiplicities in a; compared to the base
version. If both are positive, we take the maximum of the

2Symmetric rules are omitted.

3The conclusion in (21) states that the assertion v € f,(0)
has an undefined value.

34

multiplicities in the alternative versions (24). In this way,
duplicate insertions are counted only once. Analogously, the
symmetric case is handled in which both differences are neg-
ative (25). The final rule deals with all other cases (26). By
adding both differences to the multiplicity in the base ver-
sion, insertions and deletions are compensated. No conflict
is raised because insertions and deletions commute for bags.

0 € Om2 A fi(o,v) = fa(o,v) =n =

fm(o,v) =n (22)
0 € Oma2 A f1(0,v) # fa(o,v) =

fm(o,v) =L (23)
0E€ Om3 Ndft >0Adfs >0=

fm(0,v) = max(fi(0,v), f2(0,v)) (24)
0€ Oma Ndfi <OAdf <0=

fm(0,v) = min(f1(0,v), f2(0,v)) (25)

0€ OmsA(dfy SONdf2 >0V dfa <OAdf; > 0) =
fm(O,'U) = fb(07v) +df1(0,1}) +df2(07 U) (26)

In the case of ordered sets, we apply Rules (18-21) to de-
termine the elements to be included into the merged set. We
solve the problem of deriving the order of these elements by
graph algorithms because the uncoordinated application of
feature rules as given above — operating e.g. on a prede-
cessor feature — does not guarantee a linear order. These
algorithms aggregate elements into linearly ordered clusters.
Within each cluster, the order of its elements has to be de-
termined e.g. by user interaction or random ordering.

Since the algorithms for two- and three-way merging are
closely related, we provide an integrated description. In Al-
gorithm 1, an operation called node contraction is used: All
nodes belonging to a cluster are replaced with a cluster node,
and all adjacent edges from and to nodes outside the cluster
are redirected to the cluster node. Furthermore, node dele-
tion removes a node and connects all of its predecessors to
all of its successors.

ALGORITHM 1 (MERGING OF ORDERED SETS).
Let Vi, V2, and V;, denote three ordered sets of values (with
Vs = 0 in the case of two-way merging).

1. Construct graphs g1 = (Vi, E1), g2 = (V2, E2), and
g» = (Wb, Ep) each of which consists of a chain of ele-
ment nodes augmented with a start node and an end
node.

2. Contract nodes for shared elements as well as the start
and the end nodes.

3. From the resulting graph ¢, delete all nodes for ele-
ments v, € Vp, \ (V1 N V2).

4. Remove all edges (v,v") € Ep \ (E1 N E3).

5. Contract nodes on cycles into a cluster node until all
cycles are eliminated.

6. Contract sets of nodes which are not mutually related
transitively by order relationships.

7. Eliminate transitive edges. (After this step, the graph
consists of (cluster) nodes which are arranged in a lin-
ear order.)

Figure 3: Three-way merging of ordered sets

8. Process the clusters in their linear order. For each

cluster C, perform the following steps:

(a) In the case of two-way merging, determine for
each v € C'\ (V1 N V2) whether v should be in-
cluded into Vi,. If not, remove v from C.

(b) If C = 0, delete the cluster node.

(c) If C # 0, determine the order of its elements and
split up the cluster accordingly.

After Step 8, the graph has a linear order, and each node
corresponds to a single element. O

EXAMPLE 1 (MERGING OF ORDERED SETS).
An (abstract) example is given in Figure 3. In Step 1, three
linear graphs are created; the base graph is shown in the
middle. In Step 2, the graph union is performed. Step 3
deletes g because it is contained in the base and the right
alternative, but not in the left alternative. Step 4 removes

35

the edge ¢ — e because the successors of ¢ in both alterna-
tives are different from the successor in the base; similarly,
b — ¢ is deleted because it is contained in b and a1 but not
in az. Step 5 does not have any effect because the graph
does not contain cycles. Step 6 contracts a and f because
they are not ordered in either direction. Step 7 eliminates
the transitive edge af — b. Finally, in Step 8 only the order
of a and f still has to be determined. All other decisions
have been resolved automatically in Steps 3 and 4. |

Algorithm 1 may be applied also to ordered bags. In the
case of ordered sets, the matchings which are required as
inputs are determined uniquely since each element occurs at
most once in each of the sets. In the case of ordered bags,
we assume that the matchings have been calculated by some
appropriate algorithm (e.g., longest common subsequence,
which, however, does not take moves into account).

6. CONTEXT-SENSITIVE MERGING

The context-free rules given in Subsection 5.2 may be
applied to attributes as they stand. However, when they
are applied to links, they ignore contezt-sensitive conflicts.
Therefore, the current section deals with context-sensitive
aspects of model merging.

6.1 Structure Graphs

DEFINITION 1 (STRUCTURE GRAPH). For some
model mod, its structure graph g = (N, E, name, mult, inj) is a
bipartite graph. N = OUR is a set of nodes; O and R denote
the objects of mod and their references, respectively. R =
C U X, ie., R consists of containment and (non-opposite)
cross references, respectively. £ C (O x RUR x O) is a set
of edges (from objects to owned references and vice versa).
name : N — string assigns to each object its class name
and to each reference the name defined in the Ecore model.
mult : R — {1, *} assigns to each reference its multiplicity.
Finally, inj : X — boolean determines whether a reference is
injective. O

A structure graph constitutes an abstraction of a model
which is tailored towards the definition of context-sensitive
conflicts and the design of an algorithm for structure merg-
ing. The structure graph does not contain attributes and
abstracts from the order of links in the case of multi-valued
references (which may be determined along the lines of Al-
gorithm 1). Each reference denotes a slot for one or many
links, which are represented by edges. Please note that oppo-
site references (and their links) are not represented because
they may be derived from forward references*. The func-
tions name, mult, and inj represent information from the un-
derlying Ecore model which is required for the merge. The
names of references are needed to identify the references
when building the merged structure graph. The multiplic-
ities of references are required for distinguishing between
single- and multi-valued references during the merge. Us-
ing the function inj, conflicts on injective references can be
detected (36).

DEFINITION 2 (MERGED STRUCTURE GRAPH). Let
gi = (N;, E;, name;, mult;, inj;) (¢ € {b,1,2}) denote structure

4The reference class with an incoming EOpposite reference
in the Ecore model is arbitrarily defined as the end to be
omitted.

graphs for the base version and the alternative versions. The
merged structure graph is defined as the graph union g, =
g»Ug1 Uga, where nodes for objects with the same identifiers
as well as nodes for references with the same names are
identified. The origins of the elements of g, are recorded
with a function in : (Vi U Ey) X I — boolean, where I =
{b,1,2} is a set of indices, such that:

in(ne, i) = true < ne € ¢;(i € {b,1,2}) (27)

O

The merged structure graph is an auxiliary intermedi-
ate data structure which is used during the merge. This
data structure represents the superimposition of the struc-
ture graphs of the input versions with the help of interleaved
deltas. For each element of the merged structure graph, the
function in records in which input versions this element oc-
curs. Eventually, the structure graph of the merged version
will be a subgraph of the merged structure graph. To avoid
terminological confusion, the former graph will be called the
final structure graph. The final structure graph has to repre-
sent a valid model. In contrast, in general the initial merged
structure graph does not correspond to a valid model.

6.2 Context-Sensitive Conflicts

In this subsection, we use the merged structure graph to
define context-sensitive conflicts with the help of predicate
logic.

6.2.1 Containment Conflicts

The containment trees of the input models have to be
merged in such a way that the merged version has a spanning
containment tree. However, the merged structure graph may
not be a tree. Containment conflicts defined below indicate
violations of the tree structure.

For the definitions referring to containment conflicts, we
consider a subgraph of the merged structure graph which
contains only containment references ¢ € C C R and does
not contain graph elements which would be deleted by three-
way merge rules. The resulting graph is called containment
graph and contains only nodes for objects in O,, (10) and
Cr, (containment references for objects in O,y).

A containment conflict is a graph pattern which violates
the tree structure of the containment graph. More specif-
ically, a single-valued containment conflict occurs on some
containment reference ¢ € Cy, if multiple links compete for
a single slot:

mult(c) = 1A(Jo1,02 € On, : 01 # 02Ac — 01Ac — 02) (28)

A non-unique container conflict occurs on some object
0 € Oy, if there are multiple competing containers:

Jer,c2€Cmicr #Fc2Net —o0ANc2 =0 (29)
A cyclic containment conflict occurs on some object o €

O, if the object is (transitively) contained in itself:

oho (30)
Finally, a dangling component conflict occurs on some ob-

ject o € Oy, if it is not reachable from the root r:

=(r r 0) (31)

36

6.2.2 Delete Conflicts

Context-sensitive conflicts do not necessarily result in in-
consistencies. Please recall that we have to detect conflicting
changes, regardless whether they result in inconsistencies or
not. In particular, deletion of an object invalidates all oper-
ations applied to that object. We distinguish between three
types of delete conflicts: delete-modification, delete-move,
and delete-reference conflicts.

An object o is involved in a delete-modification conflict
if it was deleted from one branch and was modified on the
other branch. The term “modification” denotes any change
in the subtree with root o. The delete operation invalidates
the change operations.

Let us define a delete-modification conflict formally: For
some object o, let tree(o) denote the tree with root o. Fur-
thermore, let . = . be a predicate on trees which yields true if
and only if the trees are equal. We define the set of modified
objects as follows:

Omod = {0 S Obl
Ji € {1,2} : 0 € O; Atreey(0) # tree;(0)} (32)
A delete-modification conflict occurs on o if o is classified
as both deleted and modified:

o€ Odelmod == Odel N Omod (33)

A delete-move conflict occurs on some object o if o was
deleted on one branch and was moved on the other branch.
Thus, the object is classified as deleted and has multiple
containers in the merged structure graph:

0€ Oget NJer,c2€ Cyuic1 >0Nca 0N #ca (34)

Deleting an object o on one branch and adding a link to it
on the other branch raises a delete-reference conflict. Please
note that the inserted link may refer to o or any component
of 0 in its containment tree (3 denotes the reflective and
transitive closure over containment links):

ondel/\Ha:EXm,o'GOu:oi*>o'/\m—>o'¢Eb (35)

6.2.3 Reference Conflicts

In EMF, references are uni-directional, but they may be
composed into pairs if bi-directional navigation is required.
As already mentioned in Subsection 6.1, opposite references
are treated as derived data and therefore are not represented
in the merged structure graph. Rather, maintaining consis-
tency of bi-directional links is delegated to the EMF base
operations when the merge model is constructed from the
final structure graph.

However, there is one property of opposite references which
has to be considered during the merge: In the Ecore model,
an opposite reference may be declared as single-valued. Then
the primary references have to be injective (as noted by the
function in in the merged structure graph). An injectivity
conflict occurs on two cross references x1,xs if the refer-
ences are marked as injective and their inverse links refer to
the same object:

1 € Xm ANx2 € Xy A1 # 22 A
name, (z1) = namey(z2) Ainj, (z1) A inj, (z2) A

o€ Om:21 > 0AT2 =0 (36)
EXAMPLE 2 (CONTEXT-SENSITIVE CONFLICTS).
Part a of Figure 4 shows a merged structure graph which
will be used later for demonstrating the context-sensitive
merge algorithm. Colors and line styles indicate in which
input versions the elements are contained. A single-valued
containment conflict occurs on o1 because the original com-
ponent o2 was replaced with the new component 019 on one
branch and the already existing component o5 was moved
to the container o1 on the other branch. A non-unique con-
tainer conflict occurs on o5 because o5 was moved to differ-
ent containers (01 and os, respectively). A cyclic contain-
ment conflict occurs on o3 and o4 because 03 was moved to
o4 and vice versa. A dangling component conflict occurs on
both o3 and 04 because they lost the connection to the root
r. In addition, the same type of conflict occurs on the new
component og because its container og was deleted on the
other branch. A delete-modification conflict occurs on og be-
cause it was deleted one branch, while the new component
09 was added on the other branch. A delete-reference con-
flict occurs on o7 because it was deleted from one branch
and a cross link from o4 was added on the other branch.
This conflict is propagated upwards to og because deletion
of o would imply the deletion of o7. Finally, an injectiv-
ity conflict occurs on the cross links emanating from og and
09 which were added on different branches and refer to the
same object o3. a

6.3 Algorithm for Context-Sensitive Merging

The following algorithm starts with constructing the mer-
ged structure graph, which is successively transformed into
the final structure graph. First, the containment tree is
built; subsequently, cross links are processed. Conflicts are
detected and resolved on the fly. The final structure graph
is a representation of the structure of a valid model.

While we have specified rules for the detection of context-
sensitive conflicts in a declarative way in the previous sub-
section, we follow an operational approach to the actual con-
struction of the final structure graph. The control structure
of the graph algorithm is required to coordinate the resolu-
tion of inter-dependent context-sensitive conflicts in such a
way that the result of the merge is a valid model.

ALGORITHM 2 (CONTEXT-SENSITIVE MERCING). Let
gv, g1, and go denote the structure graphs of the input ver-
sions. Context-sensitive merging is performed by construct-
ing the merged structure graph and iteratively removing el-
ements which are not be included into the final structure
graph:

1. Initialization

(a) Construct the merged structure graph
Gu =g UgiUgz (37)

(b) Insert the containment references of the root into
the set C":

C:={ceCylr —c} (38)

37

2. Build the containment tree top-down, taking context-
sensitive conflicts into account. While C # 0, do:

(a)
(b)

()

(d)

()

Select and remove some ¢ € C.

Determine the targets of all links emanating from
c

T:={0€Oulc—o0€ Ey,} (39)
Apply context-free merge rules for containment
links to all objects o € T" which are not involved
in a context-sensitive conflict.

For objects o € T involved in conflicts, resolve the
conflict to decide whether o is to be included into
the component set.

Let T” C T denote the set of components selected
from the target set. Remove obsolete contain-
ment links not ending in 7" as well as conflicting
containment links which emanate from other con-
tainment references and end at objects in T":

E,:=(E,\{c—o0log T}
\{c' = olc£c NocT'} (40)

Purge all objects which are no longer reachable

from the root r via containment links from g,,.

For each o € T' which was involved in a delete
conflict, propagate the undelete operation to com-
posed nodes and edges. Let in(0,i) = false for
some i € {1,2}. Perform a transitive closure over
containment links, regarding only nodes or edges
ne which were contained in b but not in a;. Un-
delete is performed by updating the function in
for o and all transitively reached ne:

(41)
(42)

in(0,1) := true
in(ne,i) := true
Add the containment references of all objects in

T to C:

C:=CU{cd €CulF0€T :0—c} (43)

3. Process cross links x € X,, as follows:

(a)

Determine the target set of all cross links ema-
nating from z:

T:={0€Oulxr —0€ E,} (44)
Apply context-free merge rules for links to all ob-
jects o € T which are not involved in a context-
sensitive conflict (an injectivity conflict).

In the case of an injectivity conflict of x — o with
some =’ — o, resolve the conflict by selecting one
of the links and deleting the competing link.

Let 7' C T denote the set of objects selected from
the target set T'. Delete links to objects outside
of T':

E,:=E,\{z—olz ¢ T} (45)

O

|I| object <> containment reference uni-directional cross reference bi-directional cross reference

1, * : multiplicities inj : injective cross-reference |é> current reference |I| elements of m

- . 1 : H H - . H
| o onlyinb | o | deletedfromeithera;ora; | o | inserted into either a; or a, |I| ina; and a,

Figure 4: Example: Context-sensitive merging

38

EXAMPLE 3 (CONTEXT-SENSITIVE MERGING).

Figure 4 illustrates how the merged structure graph which
we have introduced in Example 2 is transformed into the
final structure graph. Each subfigure displays a state of the
graph reached during the execution of the algorithm. In each
state, the elements which have already been inserted into the
final structure graph are displayed in gray. Furthermore, the
reference to be processed is indicated by an arrow. State a
is reached after the initialization and the selection of the
(only) containment reference of the root. States a—d belong
to Step 2 of the algorithm, in which the containment tree is
built. States e—g are reached during the execution of Step 3
(processing of cross links). State h is the final state.

In State a, the containment reference of the root — say c
— is processed. The link to o5 is deleted because it is con-
tained in neither of the alternative versions. o; and os are
inserted into m since they are shared components. Although
the links to o3 and o4 were removed from the alternative
versions, they are offered as candidates because both are
involved in context-sensitive conflicts (a cyclic containment
conflict and dangling component conflicts). We assume that
it is decided to include o4 but not os. Since each object
must have at most one container, the containment link from
03 to 04 is removed, which eliminates the cyclic containment
conflict. Finally, a delete-modification conflict occurs on os.
We assume that that this conflict is resolved by giving pref-
erence to the modifications. Therefore, the containment link
to og is inserted into m, and an undelete operation is applied
to o¢ and its contained components. As a consequence, o7
is re-classified as a shared element.

In State b, the containment reference of 0; is processed.
The link to o2 is deleted because it belongs to the base only.
Now, o2 is unreachable and is purged from the graph. A
single-valued containment conflict occurs on the reference.
We assume that the link to os is selected. Therefore, o5 is
inserted into m, and the conflicting containment link from og
is deleted. Furthermore, the link to o019 is removed, which
now becomes a dangling component and is removed even
though it was classified as an inserted element.

In State c, processing continues with the containment ref-
erence of o4: The link to o3 as well as its target are added
to m.

In State d, the containment reference of og is processed.
We observe that or has previously been re-classified as a
shared element. Therefore, it is inserted into m. With-
out the re-classification, o7 would have (erroneously) been
deleted. o9 is inserted as a new element. The next step
(processing of 0s) is skipped because it does not change gy,.
This terminates the phase for building up the containment
tree and leaves us with the cross references, which still have
to be processed.

In State e, the link from o4 to o7 is inserted. Please note
that in the initial state of g, a delete-reference conflict oc-
curred on o7. In the meantime, however, the deletion of o7
has been undone, eliminating the delete-reference conflict.
Therefore, the link can now be inserted automatically.

In State f, the cross reference from og is processed. An in-
jectivity conflict with the reference emanating from oz is de-
tected. We assume that the reference from os is selected. As
a consequence, the conflicting reference from og is deleted.

In State g, the link from og to o3 is inserted automatically
because the injectivity conflict has already been resolved in
the previous step.

39

In State h, we obtain the final structure graph. The graph
represents the structure of a valid model and incorporates all
non-conflicting changes, as well as those alternatives which
have been selected by the user in the case of context-free or
context-sensitive conflicts. O

7. PROPERTIES

The overall merge algorithm may be synthesized from the
parts given in Sections 5 and 6 by extending the structure
graph and the merged structure graph with attributes and
orderings, using Algorithm 2 to determine the containment
tree and the cross links of the merged version, applying the
context-free rules for feature merging given of Subsection 5.2
to attributes, and using Algorithm 1 for determining the
order of set-valued features (both attributes and links). In
the following, we state two properties of the overall merge
algorithm.

THEOREM 1 (VALIDITY OF THE MERGED VERSION).
Let b, a1, and a2 be valid models of the same type ¢ which
are connected by consistent pair-wise matchings satisfying
Conditions 3—7. Under these prerequisites, the constructed
merged version m is a valid model of type t.

PROOF. Since the input versions are valid models of the
same type and identified objects are instances the same class,
each object in m has a unique class and the features defined
for this class. For all features of all objects in m, the values
are instances of types defined in the Ecore model because
the values in m have already occurred in the input versions.
The context-free rules for feature merging guarantee that
the values of single-, set- and bag-valued features are single
values, sets, and bags, respectively. For ordered set-valued
features, Algorithm 1 constructs a linear order.

m has a spanning tree: Step 2 of Algorithm 2 constructs
the containment tree top-down. Each (non-root) object is
added to the containment tree together with one incoming
containment link; competing incoming containment links are
deleted. Furthermore, objects which are not reachable are
deleted. Referential integrity is maintained because in Step 3
of Algorithm 2 cross links are created only to objects in m.
Finally, consistency of bi-directional links is guaranteed by
considering only one direction explicitly during the merge
and delegating the creation of opposite links to the EMF
base layer. a

THEOREM 2 (DETECTION OF CONFLICTS). Let b, a1,
and a2 be consistent models of the same type t which are
connected by consistent pair-wise matchings satisfying Con-
ditions 3-7. Let A; and A2 be sequences of operations calcu-
lated from these matchings such that a; = A;(b),¢ € {1,2}.
Under these prerequisites, the merge algorithm detects all
change-based conflicts between operations in these deltas.

PRrROOF. According to Conditions 1-2, two operations op; €
A;,t € {1,2} are in conflict if one of them invalidates the
other one or they do not commute. The types of operations
to be considered were listed in Table 1. For each pair of
types, we have to show that our state-based merge algorithm
detects change-based conflicts with the help of context-free
and context-sensitive merge rules. This proof goes beyond
the scope of this paper; see [20]. O

8. RELATED WORK

Operation-based merging [16] tries to solve the merge prob-
lem at a very generic level by merging operation sequences.
The algorithm may be applied to any abstract data type,
provided that decision procedures for the commutativity of
operations have been written. A conflict occurs if operations
do not commute. To detect such conflicts, all interleavings
of the operation sequences have to be considered. The merge
algorithm is not only computationally expensive. In addi-
tion, the merge is complex to handle for the user because
different interleavings may results in different states which
all have to be considered.

In [12], an operation-based tool for three-way merging is
presented which may be applied to models which are rep-
resented as graphs. In contrast to operation-based merging
described above, a fixed metametamodel is assumed (Ratio-
nale Based Unified Software Engineering Model). Conflict
analysis is performed using only the operation sequences
which transform a common base version into two alterna-
tive versions. This reduces the complexity of analysis, but
constrains the set of detectable conflicts: Only the oper-
ations and their actual parameters, but not the states in
which they are executed are taken into account. Merging
is an interactive process where the user has to decide for
each operation whether it shall be applied or skipped. If an
operation is selected, all required operations from the same
sequence are selected, as well, and all conflicting operations
from the other sequence are deselected.

[18] presents an approach to three-way merging of mod-
els represented as graphs which is based on category theory.
With the help of pushouts, a union graph is constructed
which contains all elements from all input version. The
union graph resembles the merged structure graph in our
approach. In the union graph, elements are marked as cre-
ated, common, deleted, renamed, or moved. Furthermore,
conflicts are detected with the help of generic rules which
may be augmented with specific rules taking the constraints
of a specific metamodel into account. For example, there
is a generic rule to detect delete-reference conflicts. Unfor-
tunately, conflicts are only detected, but not resolved: The
merge process stops when a conflict is flagged in the union
graph. Furthermore, the approach operates at a more gen-
eral level than our work and would have to be adapted for
merging of models in EMF.

[6] presents a framework for model merging which is based
on algebraic specifications. A generic merge operator may
be applied to models of any type defined by an algebraic
specification. The operator performs a union of two models,
identifying common elements. That is, it performs two-way
merging, where all differing elements are included automat-
ically into the merged version. This approach resembles
schema integration in database management systems, but
differs considerably from three-way merging.

[5] proposes a generic three-way merge algorithm which
is applied to models at a low level of abstraction. The re-
sult produced by the merge may be inconsistent, both with
respect to the respective meta model and the underlying
metametamodel. In a post-processing phase, inconsistencies
are detected automatically and resolved interactively. In
our approach, the model merge produces a valid model, i.e.,
fundamental inconsistencies which may prevent further pro-
cessing of the merge result are avoided. However, violation
of specific constraints — e.g., expressed in OCL in addition

40

to an Ecore model — still requires post-processing.

In [19], we have presented a tool for three-way merging of
software documents. The tool merges software documents
of arbitrary types which are represented as abstract syn-
tax graphs. The merge is based on a pair-wise compar-
ison of the input versions (state-based merging). It pre-
serves context-free correctness, detects context-free two- and
three-way merge conflicts, and detects and partially resolves
context-sensitive conflicts by a post-processing phase. The
work presented in this paper differs from our previous work
in two respects: First, the underlying data models are differ-
ent. Second, the old algorithm takes neither deletion con-
flicts nor move operations into account. Both extensions
require a considerably more sophisticated merge algorithm.

3dm [15] is a tool for three-way merging of XML docu-
ments. The tool focuses on the tree structure and does not
consider links (non-hierarchical relationships). The merge
tool assumes mappings among the inputs versions from which
the changes are derived (including move operations). For the
merge, all input versions are represented as sets of facts (tu-
ples for representing both the structure and the attributes of
the respective XML documents). These sets are united, and
obsolete facts from the base are removed. The resulting set
is analyzed for conflicts. A conflict occurs if a single-valued
feature is assigned multiple values. This way of reasoning es-
sentially corresponds to our context-free merge rules. Apart
from delete-modification conflicts which can be recognized
in a post-processing phase, context-sensitive conflicts are not
taken into account. Furthermore, it cannot be guaranteed
that the resulting set of facts corresponds to a well-formed
XML document (even if no conflicts are detected).

[17] presents a framework for merging models based on
given correspondences. The framework is based on a meta-
metamodel supporting different kinds of semantic relation-
ships. The merge rules guarantee consistency with respect
to this metametamodel, but they would not guarantee valid
models in EMF. The framework may be adapted, but im-
plementing the semantics required for EMF models is not
straightforward.

In [1], a change-based algorithm for three-way merging
of MOF model instances is presented. The algorithm han-
dles a subset of the MOF metametamodel which is similar
to Ecore. It is assumed that model elements are assigned
unique identifiers. Furthermore, it is assumed that no model
element is inserted twice, i.e., if A; creates an object with
unique identifier u, Az cannot create another object with
the same identifier u. Even with the use of unique iden-
tifiers, this assumption may not be satisfied if a1 and a2
are not merged with respect to their most recent common
ancestor. Furthermore, the algorithm cannot handle move
operations. The produced output may be inconsistent with
respect to the MOF metametamodel. Containment conflicts
may go unnoticed, resulting e.g., in containment cycles or
non-unique containments. Furthermore, merging two or-
dered sets may result in an ordered bag.

[9] describes a tool for three-way merging of MOF model
instances which was developed in the MOFLON project [4].
The tool was inspired by the work presented in [1], but fol-
lows a state- rather than a change-based approach. Apart
from this difference, the comments given above apply also
to the tool implemented in MOFLON.

EMF Compare [7] is a differencing tool which compares
two versions of a model which may be instantiated from an

arbitrary Ecore model. The tool can also be used for an in-
teractive two-way merge, where the user removes the differ-
ences between the versions step by step. A three-way merge
may also be performed with EMF Compare. In this case,
the tool tries to detect conflicts among competing changes.
Some conflicts (e.g., delete-modification conflicts or conflict-
ing moves of the same element) are found, while others go
unnoticed (e.g., delete-reference conflicts or cyclic moves).
Furthermore, EMF Compare cannot merge ordered sets.

EMF Compare is used in the Rational Software Archi-
tect (RSA) for comparing and merging UML models [14].
Internally, both semantic and notational models are repre-
sented as EMF models. Physical changes on the EMF mod-
els are mapped back to logical changes on the respective
UML models. Thus, the RSA merge tool operates at a dif-
ferent (higher) level of abstraction as EMF Compare itself
and the approach presented in this paper. On the (more
specific) level of UML models, RSA provides several mech-
anisms for ensuring a consistent merge result (called model
integrity protection). Our work targets at improving merge
support at the EMF level, thereby complementing the UML-
specific extensions of RSA.

While the RSA merge tool still operates essentially on a
syntactic level (of UML models, particularly UML class dia-
grams), SMoVer [2] goes a step further and addresses merg-
ing at a semantic level. It is argued that syntactic merging
may produce conflicts even though the models to be merged
are equivalent at the semantic level. This requires reasoning
capabilities which are specific to the respective metamodel.
This level of reasoning is not addressed by our approach.

To specify our algorithm for three-way merging, we have
resorted to rather classical aids such as logical formulas and
graph algorithms. For comparing and merging models, sev-
eral frameworks have been developed for the specification of
merge rules, conflict detection, and conflict resolution [10,
8]. The work presented in this paper might serve as an in-
teresting test case for these frameworks.

9. CONCLUSION

We have presented a formal approach to three-way merg-
ing of models in the EMF framework which produces a
valid model, handles move operations, and detects and re-
solves context-free and context-sensitive conflicts. Previous
approaches satisfy these properties at best partially. The
formal specification serves as a foundation for developing a
three-way merge tool which implements the rules and algo-
rithms given in this paper.

10. REFERENCES

[1] M. Alanen and I. Porres. Difference and union of
models. In UML 2003, LNCS 2863, pages 2-17, San
Francisco, CA, 2003. Springer-Verlag.

[2] K. Altmanninger, W. Schwinger, and G. Kotsis.
Semantics for accurate conflict detection in SMoVer:
Specification, detection and presentation by example.
International Journal of Enterprise Information
Systems, 6(1):68-84, 2010.

[3] K. Altmanninger, M. Seidl, and M. Wimmer. A survey
on model versioning approaches. International Journal
of Web Information Systems, 5(3):271-304, 2009.

[4] C. Amelunxen, A. Konigs, T. Rotschke, and
A. Schiirr. MOFLON: A standard-compliant

41

[5]

(6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

metamodeling framework with graph transformations.
In ECMDA-FA 2006, LNCS 4066, pages 361-375,
Bilbao, Spain, 2006. Springer Verlag.

C. Bartelt. Consistence preserving model merge in
collaborative development processes. In CVSM 2008,
pages 1318, Leipzig, Germany, 2008. ACM Press.

A. Boronat, J. A. Carsi, I. Ramos, and P. Letelier.
Formal model merging applied to class diagram
integration. Electronic Notes of Theoretical Computer
Science, 166:5-26, 2007.

C. Brun and A. Pierantonio. Model differences in the
Eclipse modelling framework. UPGRADE,
1X(2):29-34, Apr. 2008.

A. Cicchetti, D. D. Ruscio, and A. Pierantonio.
Managing model conflicts in distributed development.
In MoDELS 2008, LNCS 5301, pages 311-325,
Toulouse, France, 2008. Springer-Verlag.

R. Deufler. 3-Wege-Merge auf Instanzen
MOF-konformer Metamodelle. Master’s thesis,
Technical University of Darmstadt, Darmstadt,
Germany, 2008.

K.-D. Engel, R. F. Paige, and D. S. Kolovos. Using a
model merging language for reconciling model
versions. In ECMDA-FA 2006, LNCS 4066, pages
143-157, Bilbao, Spain, 2006. Springer-Verlag.

S. Fortsch and B. Westfechtel. Differencing and
merging of software diagrams - state of the art and
challenges. In ICSOFT 2007, pages 90-99, Barcelona,
Spain, 2007.

M. Kogel. Towards software configuration
management for unified models. In CVSM 2008, pages
19-24, Leipzig, Germany, 2008. ACM Press.

D. S. Kolovos, D. D. Ruscio, A. Pierantonio, and R. F.
Paige. Different models for model matching: An
analysis of approaches to support model differencing.
In CVSM 2009, pages 1-6, Vancouver, BC, Canada,
2009. IEEE Computer Society Press.

K. Letkeman. Comparing and Merging UML Models
in IBM Rational Software Architect: Part 8. IBM,
Aug. 2005.

T. Lindholm. A three-way merge for XML documents.
In ACM Symposium on Document Engineering, pages
1-10, Milwaukee, WI, 2004. ACM Press.

E. Lippe and N. van Oosterom. Operation-based
merging. In SDE5, pages 78-87, Tyson’s Corner,
Virginia, Dec. 1992. ACM Press.

R. A. Pottinger and P. A. Bernstein. Merging models
based on given correspondences. In VLDB 2003, pages
862-873. VLDB Endowment, 2003.

A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A
category-theoretical approach to the formalisation of
version control in MDE. In FASE 2009, pages 64-78,
York, UK, 2009. Springer-Verlag.

B. Westfechtel. Structure-oriented merging of revisions
of software documents. In SCM-3, pages 6879,
Trondheim, Norway, 1991. ACM Press.

B. Westfechtel. Three-way merging of EMF models. In
preparation, 2010.

